

Production Ready Data
Science: From Prototyping to
Production with Python
Khuyen Tran

Table of contents
Preface

Motivation
Audience
Prerequisites
What Makes This Book Different
Hands-On Examples
About the Author

Copyright
1 Version Control

1.1 What Is Version Control?
1.2 Why Is Version Control Essential?
1.3 Use Git for Version Control
1.4 Best Practices in Version Control
1.5 Key Takeaways

2 Dependency Management
2.1 What Is Dependency Management?
2.2 Best Practices for Dependency Management
2.3 Use uv to Manage Dependencies
2.4 Key Takeaways

3 Python Modules and Packages
3.1 What Are Python Modules and Packages?
3.2 Project Organization Best Practices
3.3 Import Best Practices
3.4 Key Takeaways

4 Python Variables
4.1 What Are Variables?
4.2 Choose the Right Python Collection

4.3 Best Practices for Python Variables
4.4 Key Takeaways

5 Python Functions
5.1 What Are Python Functions?
5.2 Why Are Python Functions Essential?
5.3 Best Practices for Python Functions
5.4 Advanced Function Toolkit
5.5 Key Takeaways

6 Python Classes
6.1 What Are Python Classes?
6.2 Best Practices for Python Classes
6.3 Advanced Class Toolkit
6.4 Key Takeaways

7 Unit Testing
7.1 What Is Unit Testing?
7.2 Why Is Unit Testing Essential?
7.3 Use Pytest for Unit Testing
7.4 Best Practices for Unit Testing
7.5 Key Takeaways

8 Configuration Management
8.1 What Is Configuration Management?
8.2 Why Is Configuration Management Essential?
8.3 Use Hydra to Manage Configurations
8.4 Best Practices for Configuration Management
8.5 Key Takeaways

9 Logging and Exception Handling
9.1 What Is Logging?
9.2 Why Should You Use Logging Instead of Print?
9.3 Use Loguru for Python Logging
9.4 Best Practices For Exception Handling
9.5 Key Takeaways

10 Data Validation
10.1 What Is Data Validation?
10.2 Why Is Data Validation Essential?
10.3 Data Validation Made Easy with Pandera
10.4 Best Practices for Data Validation

10.5 Key Takeaways
11 Data Version Control

11.1 What Is Data Version Control?
11.2 Why Is Data Version Control Essential?
11.3 Use DVC for Data Version Control
11.4 Key Takeaways

12 Continuous Integration
12.1 What Is Continuous Integration?
12.2 Why Is Continuous Integration Important?
12.3 Use GitHub Actions for Continuous Integration
12.4 Common Data Science Workflows
12.5 Key Takeaways

13 Package Your Project
13.1 What Is Packaging?
13.2 Why Is Packaging Essential?
13.3 Use uv for Packaging
13.4 Manage Package Versions
13.5 Add a Documentation Page
13.6 Key Takeaways

14 Notebooks in Production
14.1 Notebook Production Challenges
14.2 Best Practices for Jupyter Notebooks
14.3 Use marimo for Reproducible Data Science
14.4 Key Takeaways

Preface

Motivation

Have you ever encountered these situations in your data science
projects?

Your Jupyter Notebook starts simple but becomes a mess as the
project grows
Debugging takes forever because code is scattered and poorly
organized
Package installations break your environment and waste hours
troubleshooting
Code is difficult to adapt to new datasets or requirements
Code fails to run consistently across different environments
Changes are hard to track and rollback to previous working
versions
Previously written code is challenging to reuse and extend
Critical bugs surface late in development
Adding new features feels risky due to potential regressions

These challenges arise from the gap between exploratory data
analysis and production-grade software engineering practices. This
book aims to bridge this gap.

The book covers a wide range of essential topics for building
production-ready data science applications. Here’s an overview of
what you’ll learn:

1. Version Control for Code: Explore version control systems
like Git and learn how to apply version control practices to your
code, enabling you to track changes, collaborate with others, and
manage your codebase effectively.

2. Dependency Management: Learn how to handle Python
package dependencies using tools like pip or poetry, ensuring
consistent and reproducible environments for your projects.

3. Python Modules and Packages: Master the creation,
organization, and use of Python modules and packages to
structure your code efficiently and promote reusability.

4. Python Variables, Functions, and Classes: Learn
techniques for writing clean and modular code using variables,
functions, and classes, enabling better code organization and
reusability.

5. Unit Testing: Learn how to write effective unit tests using
frameworks like pytest, enabling you to catch bugs early,
improve code quality, and facilitate future code changes.

6. Project Configuration: Learn how to separate configuration
parameters from code logic, allowing for easier customization
and deployment across different environments.

7. Logging and Exception Handling: Learn how to generate
informative log messages that aid debugging, troubleshooting,
and monitoring application behavior.

8. Data Validation: Discover techniques for validating data
types, ranges, formats, and consistency, enabling you to build
more reliable and robust data science pipelines.

9. Version Control for Data: Learn strategies and tools for
versioning your data, ensuring reproducibility and traceability in
your data science projects.

10. Packaging Projects: Discover how to structure your project
for distribution, create setup files, and publish your package to
PyPI, making it easy for others to install and use your code.

11. Building a CI Pipeline: Learn how to set up a Continuous
Integration (CI) to automate code testing and documentation
generation, ensuring code quality and facilitating collaborative
development.

12. Jupyter Notebook Best Practices: Master techniques for
creating well-structured, reproducible, and shareable Jupyter
notebooks, including cell organization, markdown usage, and
version control integration.

Audience

The primary audience for this book includes:

1. Data Scientists: Professionals who are skilled in data analysis,
machine learning, and statistical modeling, but may lack
experience in software engineering practices necessary for
production environments.

2. Data Analysts: Those who work with data and create analyses
but want to improve the scalability and maintainability of their
projects.

3. Machine Learning Engineers: Professionals who are
looking to bridge the gap between creating models and
deploying them in production environments.

4. Data Science Students: Advanced students or recent
graduates who want to learn practical skills for transitioning
from academic projects to industry-standard practices.

5. Research Scientists: Those in academia or research
institutions who want to make their work more reproducible and
easier to collaborate on.

6. Data Science Team Leads: Professionals responsible for
improving their team’s workflow and code quality.

Prerequisites

Familiarity with fundamental Python concepts, syntax, and data
structures.

A foundational understanding of basic data science concepts,
such as data processing and model training.
Basic knowledge of using the command-line interface for tasks
like navigating directories and running scripts.
Basic familiarity with popular data science tools like pandas,
NumPy, and matplotlib would be beneficial but not mandatory.

What Makes This Book Different

1. Simplified Language: The book materials are presented in a
manner that is easy to understand, making complex concepts
more accessible to learners.

2. Visual Support: Clear and visually appealing graphs and
examples accompany each concept and topic, enhancing
understanding and providing visual aids for better retention.

3. Practical Examples: The examples provided are directly
related to data science projects, offering practical applications
for the concepts discussed.

Hands-On Examples

This book is accompanied by a comprehensive GitHub repository
containing practical implementations of every concept discussed:

https://github.com/khuyentran1401/production-ready-data-
science-code

Each directory contains runnable examples, sample data, and
detailed README files to help you practice the concepts
immediately.

About the Author

Khuyen Tran transforms how data scientists learn and work. She has
written over 180 articles as a top writer on Towards Data Science,
helping data professionals bridge the gap between prototyping and
production.

As founder of CodeCut, she publishes daily Python tips in her
newsletter that reach over 10,000 views per month and has built a

https://github.com/khuyentran1401/production-ready-data-science-code

community of 110,000 LinkedIn followers.

Previously an MLOps Engineer and Senior Data Engineer at
Accenture, she built enterprise data solutions for clients worldwide.

Copyright
Production Ready Data Science: From Prototyping to
Production with Python

Copyright © 2025 Khuyen Tran

All rights reserved. No part of this publication may be reproduced,
distributed, or transmitted in any form or by any means, including
photocopying, recording, or other electronic or mechanical methods,
without the prior written permission of the author, except in the case
of brief quotations embodied in critical reviews and certain other
noncommercial uses permitted by copyright law.

First Edition

Published: January 2025

Published by: CodeCut Technologies LLC

Author: Khuyen Tran

Contact: khuyentran@codecut.ai or visit codecut.ai

Disclaimer

The information in this book is distributed on an “As Is” basis,
without warranty. While every precaution has been taken in the
preparation of this work, neither the author nor the publisher shall
have any liability to any person or entity with respect to any loss or

damage caused or alleged to be caused directly or indirectly by the
information contained in this book.

The code examples and techniques presented in this book are for
educational purposes. Readers should exercise caution and best
practices when implementing these techniques in production
environments.

Trademarks

All trademarks mentioned in this book are the property of their
respective owners.

1 Version Control

1.1 What Is Version Control?

Version control is a system that tracks changes to files and enables
software developers to collaborate in a safe, organized, and effective
way. Version control allows teams to manage their codebase
efficiently, revert changes when needed, and safely experiment with
code changes.

1.2 Why Is Version Control Essential?

Version control is especially important in a data science project for
several key reasons.

1.2.1 Track Changes and Revert Easily

Version control provides safety and efficiency by tracking every code
change, allowing quick recovery when problems occur, and
maintaining a complete project history.

Consider developing a machine learning model for customer churn
prediction without version control. After making significant changes
to your model.py file, testing shows degraded performance. Without
an accurate record of changes, you spend hours manually trying to
undo modifications, risking new errors in the process.

Version control solves this by letting you commit changes regularly
during development. When testing reveals performance drops, you
can review commit history, identify the problematic change, and
revert to the previous working state, as shown in Figure 1.1.

Figure 1.1: Version control workflow for machine learning model development

1.2.2 Collaborate Effectively

Version control transforms team collaboration by eliminating file
conflicts, tracking contributor changes, and enabling organized
project coordination.

Consider a data analysis project with multiple team members where
each person saves work on their local machine or shared drive.
Combining everyone’s work creates conflicting file versions and
overwritten changes. You spend hours manually merging different
code versions, trying to reconcile discrepancies and ensure nothing is
lost.

Version control provides a shared repository where each team
member works on their own branch without affecting the main
codebase. Changes are tracked with contributor information and
timestamps, enabling safe merging back into the main branch, as
illustrated in Figure 1.2.

Figure 1.2: Branching and merging workflow in version control

1.2.3 Reproduce Results Reliably

Version control delivers reliable research reproduction by tracking
exact code versions and removing guesswork about which files
generated specific results.

Consider this scenario: you publish a machine learning model, then
need to reproduce results six months later. Without version control,
you find multiple script copies with slight variations but can’t
identify which version created the published results.

Version control eliminates this uncertainty by letting you tag the
exact code version used for publication. When you need to reproduce
results, you simply checkout the tagged version to recreate the
analysis, as shown in Figure 1.3.

Figure 1.3: Reproducing analysis using a tagged version of code

1.2.4 Experiment Safely

Version control eliminates the fear of experimentation by providing a
safety net for code changes. Instead of risking production systems
with direct modifications, you can test ideas in isolation, maintain
system stability, and recover quickly from failed experiments.

Consider this scenario: you’re working on a production data
workflow that processes customer data daily and want to test an
optimization. Without version control, you make changes directly to
production code. Your experiment fails, breaking the system and
disrupting daily data flow while you struggle to revert changes under
pressure.

With version control, you create a new branch called feature/new-
processing and freely experiment with your new ideas where changes
won’t affect the main production code. After thoroughly testing your
experiment, you create a pull request to merge your changes into the
main branch.

If your changes don’t work, you simply discard the experimental
branch without affecting the production code, as shown in Figure 1.4,
allowing you to innovate without fear of breaking the existing
system.

Figure 1.4: Discarding failed experimental branch

1.2.5 Backup Your Project Securely

Version control protects your work by creating automatic backups
and preserving your project history. You can recover from computer
crashes, accidental deletions, and other disasters without losing
progress.

Imagine working on a data science project for weeks, making steady
progress on your code and files. Your computer crashes, and you
realize you don’t have a backup of your project. You’ve lost all your
hard work and must start from scratch. This becomes a frustrating
and time-consuming process that sets your project back significantly.

Version control solves this by letting you create a repository for your
project and commit changes regularly. The repository serves as both
project history and backup, keeping your code safe. If your computer
crashes or you accidentally delete a file, you simply restore the
project from the repository, as illustrated in Figure 1.5.

Figure 1.5: Restoring a project from a remote repository

1.3 Use Git for Version Control

To implement effective version control and reap its benefits,
developers need a robust tool. This is where Git comes into play. Git
is a free open-source version control tool that’s ubiquitous and
trusted by developers worldwide.

1.3.1 Key Git Concepts

Before diving into Git usage, let’s understand some key terminology:

Working Directory: This is the directory on your computer
where you’re actively working on your project files.

Local Repository: This is a hidden .git folder in your working
directory that contains the complete history of your project.
When you commit changes, they are stored here.

https://git-scm.com/

Remote Repository: This is a version of your project hosted
on a server (like GitHub or GitLab). The Remote Repository
allows you to back up your code and collaborate with others. You
can push changes to and pull updates from your repository.

Figure 1.6 illustrates the components of Git version control.

Figure 1.6: Components of Git Version Control

Let’s explore how we can effectively use Git in different scenarios.

1.3.2 Scenario 1: Starting a New Project

When beginning a new data science project, establishing version
control from the start creates a solid foundation for development.
This scenario covers the complete workflow from initializing Git in
your project directory to connecting with a remote repository for
backup and collaboration.

1.3.2.1 Overview

This workflow involves three main phases:

Creating the local repository
Making your first commit
Connecting to a remote repository for backup

1.3.2.2 Step-by-Step Process

Phase 1: Initialize Local Repository

1. Initialize a new Git repository in your working directory:

Phase 2: Create First Commit

2. Stage the changes or new files in your Git repository:

3. Review the list of changes to be committed:

Changes to be committed:

 new file: .gitignore

 new file: .pre-commit-config.yaml

 ...

4. Save the staged changes permanently in your local repository’s
history along with a commit message:

Phase 3: Connect to Remote Repository

5. Create a repository on GitHub/GitLab and add the remote
connection. If you’re using GitHub as the remote repository,

git init

Add all changes and new files

git add .

git status

git commit -m 'init commit'

create a new repository on GitHub and copy its URL. Then, add
the URL to your local Git repository with the name origin:

6. Push your initial commit to establish the remote backup:

Figure 1.7 illustrates this workflow.

Figure 1.7: Initializing a Git repository and uploading the project to a remote repository

1.3.3 Scenario 2: Contributing to an
Existing Project

git remote add origin <repository URL>

Push to the main branch on the origin repository

git push origin main

https://github.com/new

When you want to contribute to an existing data science project,
whether it’s an open-source library or your team’s codebase, you
need to safely integrate your changes without disrupting the main
project. This scenario covers the complete workflow from forking
and cloning to submitting your contributions through pull requests.

1.3.3.1 Overview

This workflow involves four main phases:

Getting access to the project code
Setting up your local development environment
Making and testing your changes
Submitting your contributions for review

1.3.3.2 Step-by-Step Process

Phase 1: Get Access to the Project Code

1. Fork the repository on GitHub if you don’t have write access to
the main repository.

2. Use git clone to create a local copy of the remote repository on
your machine.

Phase 2: Set Up Your Development Environment

3. Navigate to the project directory:

4. Create and switch to a new branch to safely develop your
changes without affecting the main codebase:

git clone https://github.com/username/project-name.git

cd project-name

git checkout -b <branch-name>

Phase 3: Implement Your Changes

5. Make your code modifications in the new branch.

6. Stage, commit, and push your changes:

Phase 4: Submit Your Contribution

7. Create a pull request on GitHub to propose merging your
changes. This enables project maintainers to review your
contributions before integrating them into the main project.

Figure 1.8 illustrates this process.

Figure 1.8: Pull request workflow

1.3.4 Scenario 3: Staying Synchronized

When working on a team project or contributing to an active
repository, the main branch often receives updates while you’re
developing your features. This scenario covers how to keep your local

git add .

git commit -m "Descriptive message about your changes"

git push origin <branch-name>

work synchronized with remote changes to avoid conflicts and
maintain a current codebase.

1.3.4.1 Overview

This workflow involves two main phases:

Securing your current work
Integrating remote updates

1.3.4.2 Step-by-Step Process

Phase 1: Secure Your Current Work

1. Ensure your local work is saved by staging and committing your
local changes. This prevents losing your progress:

Phase 2: Integrate Remote Updates

2. Pull changes from the remote main branch with git pull, which
creates a merge commit combining your work with the latest
updates:

Figure 1.9 illustrates this process.

git add .

git commit -m 'commit-2'

git pull origin main

Figure 1.9: Merging remote changes from the main branch into the local feat-2 branch

1.4 Best Practices in Version Control

1.4.1 Error Recovery and History
Management

Have you ever pushed a commit and immediately realized it
contained a bug? When you need to undo changes in a shared
repository, choosing the right recovery method prevents disrupting
team workflows and maintains project integrity.

Git provides two main approaches for handling these situations:

Safe recovery with git revert: Creates new commits that
undo changes, preserving complete history
History rewriting with git reset: Moves branch pointer to
different commits, effectively rewriting history

1.4.1.1 When You Need to Preserve History

Use git revert when:

Commits have been pushed to shared repositories

Working in team environments where history preservation is
important
You want to maintain a complete audit trail of changes

To revert a specific commit, first identify the commit hash:

commit 0b9bee172936b45c3007b6bf6fa387ac51bdeb8c

 commit-2

commit 992601c3fb66bf1a39cec566bb88a832305d705f

 commit-1

Then use git revert with the commit hash:

Figure 1.10 illustrates the git revert process.

1.4.1.2 When You Need to Remove Commits

Use git reset when:

Commits exist only in your local repository
You need to completely remove commits from history
Working on private feature branches before sharing

To reset commits, identify the target commit hash with git log, then
choose your reset type:

git log

git revert 992601c3fb66bf1a39cec566bb88a832305d705f

Soft reset: Keep changes staged

git reset --soft <commit-hash>

Mixed reset: Keep changes unstaged (default)

git reset <commit-hash>

Hard reset: Discard all changes

git reset --hard <commit-hash>

Figure 1.11 illustrates the git reset process.

Warning: Unlike git revert, git reset rewrites commit history. Never use git
reset on commits that have been pushed to a shared repository, as this can cause
problems for other team members.

1.4.2 Managing Uncommitted Work

Have you ever been deep in coding when you suddenly need to pull
updates from the remote repository, but your changes aren’t ready to
commit? Properly managing work-in-progress prevents lost changes
and maintains clean development workflows.

Git stash provides a solution for temporarily storing uncommitted
changes:

Temporary storage: Save current changes without creating
commits
Clean workspace: Switch branches or pull updates safely
Easy restoration: Reapply stashed changes when ready to
continue

For example, when you have uncommitted changes but need to pull
updates:

Figure 1.10: Git revert creates new commit to undo changes

Figure 1.11: Git reset removes commits from history

Warning

On branch feat-2

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git restore <file>..." to discard changes in working

directory)

 modified: file1.txt

 modified: file2.txt

Use git stash to temporarily save your changes:

Now your working directory is clean:

On branch feat-2

nothing to commit, working tree clean

You can safely pull updates:

After pulling, reapply your stashed changes:

On branch feat-2

Changes not staged for commit:

(use "git add <file>..." to update what will be committed)

(use "git restore <file>..." to discard changes in working

directory)

 modified: file1.txt

 modified: file2.txt

Dropped refs/stash@{0} (1234abcd5678efgh)

Figure 1.12 illustrates this process.

git status

git stash

git status

git pull origin feat-2

git stash pop

Figure 1.12: Stashing and reapplying changes during a pull operation

1.4.3 Ignore Large and Private Files

Have you ever tried to clone a repository only to wait ages for a
massive download to complete? When developers include large
datasets or confidential credentials in their Git repository, it creates
bloated repositories that are slow, insecure, and difficult to share.

Git’s ignore functionality solves this by letting you specify which files
to exclude from version control. This helps:

Keep repositories small and efficient
Protect sensitive information
Reduce unnecessary version tracking of large binary files

Create a .gitignore file in your project’s root directory to specify
which files and directories Git should ignore (shown in
Example 11.2).

Example 1.1: .gitignore

1.4.4 Commit Often and Logically

Have you ever struggled to understand what changed in a massive
commit? Large commits mixing unrelated changes make it difficult
to review, understand, and selectively revert specific modifications.

When commit focuses on a specific aspect of the project, it becomes
easier to:

Track changes and their impact
Review code modifications
Revert specific changes if needed
Understand the project’s evolution
Communicate what each commit does to other team members

Ignore large data files

*.csv

*.parquet

*.feather

*.h5

Ignore model files

*.pkl

*.joblib

*.pt

Ignore sensitive information

.env

Ignore Jupyter notebook checkpoints

.ipynb_checkpoints/

Ignore virtual environment

venv/

env/

Ignore IDE files

.vscode/

Here are some examples of small commits with clear, descriptive
messages:

1.4.5 Fetch Before Merge

Have you ever run git pull only to find unexpected merge conflicts
or mysterious code changes in your working directory? Using git
pull automatically merges remote changes without review, causing
unexpected conflicts and unintentional changes.

Instead, use git fetch followed by git merge to examine incoming
changes before merging. You can review new commits, check for
conflicts, and decide when and how to integrate updates into your
work.

Here are the steps to fetch and merge remote changes:

1. Fetch the latest changes from the remote repository without
modifying your working directory.

2. Review the changes:

Commit 1: Data preprocessing

git commit -m "Add data cleaning and preprocessing steps"

Commit 2: Feature engineering

git commit -m "Create new features for customer churn prediction"

Commit 3: Model training

git commit -m "Train initial random forest model"

Commit 4: Model evaluation

git commit -m "Add detailed model evaluation"

Commit 5: Model improvement

git commit -m "Optimize model hyperparameters"

git fetch origin

e4f5g6h Update data preprocessing script

d7e8f9a Add new feature extraction function

3. Once you’re satisfied with the changes, merge them:

Updating a1b2c3d..e4f5g6h

Fast-forward

preprocessing.py | 15 ++++++++++++---

feature_extraction.py | 25 +++++++++++++++++++++++++

2 files changed, 37 insertions(+), 3 deletions(-)

Figure 1.13 demonstrates this process.

Figure 1.13: Fetching and merging remote changes

1.5 Key Takeaways

Version control is an essential tool for data scientists, enabling
efficient collaboration, experimentation, and project management.
Here are the key takeaways from this chapter:

Check differences between current branch and remote main

git log ..origin/main

git merge origin/main

1. Core benefits of version control:
Track changes and revert to previous versions when needed
Collaborate effectively with team members
Reproduce results reliably
Experiment safely without affecting production code
Backup your project safely and securely

2. Git fundamentals:
Working Directory: Where you make changes to files
Local Repository: Stores complete project history
Remote Repository: Hosts code for backup and
collaboration
Commits: Snapshots of changes with descriptive messages
Branches: Isolated environments for feature development

3. Essential Git commands:
git init: Start a new repository
git add & git commit: Save changes
git push & git pull: Sync with remote repository
git branch & git checkout: Manage different versions
git merge: Combine changes from different branches
git revert & git reset: Undo changes when needed

4. Best practices:
Use .gitignore to exclude large files and sensitive data
Make small, focused commits with clear messages
Fetch before merging to review changes
Create feature branches for new development
Use git revert for shared repositories, git reset only locally
Use git stash for work-in-progress storage
Regularly sync with the remote repository

By following these practices and understanding these concepts, you
can effectively manage your code, collaborate with others, and
maintain a clean, organized project history.

2 Dependency Management

2.1 What Is Dependency Management?

2.1.1 Dependencies

Dependencies are the code libraries or packages that a project
depends on. For example, in a data science project, you might use the
following libraries:

pandas for data manipulation and analysis
scikit-learn for machine learning algorithms
matplotlib and seaborn for data visualization
requests for making HTTP requests
pytest for testing code

External packages provide functionality that you can use in your
project without having to write everything from scratch.

2.1.2 Dependency Management Tool

A dependency management tool is software that helps automate and
streamline the process of managing project dependencies.
Dependency management tools handle tasks such as:

Installing packages and their dependencies
Resolving version conflicts between packages

Creating isolated environments for different projects
Generating dependency specifications
Updating packages to the newest version
Ensuring reproducible environments across different machines

Python has multiple dependency management tools available, each
with specific strengths and weaknesses:

pip: Simple but limited

Pros: Minimal learning curve, established ecosystem
Cons: No environment management, slow resolution

Conda: Scientific computing focus

Pros: Built-in environments, fast resolution
Cons: Limited packaging, moderate learning curve

uv: Modern and fast

Pros: Fastest resolution, comprehensive packaging
Cons: Growing ecosystem, moderate learning curve

The next section will cover best practices that apply to dependency
management regardless of which tool you choose.

2.2 Best Practices for Dependency
Management

To ensure efficient and effective dependency management in your
Python data science projects, it is essential to follow a set of best
practices:

2.2.1 Use Virtual Environments

Data scientists frequently need to manage multiple projects
simultaneously, each with unique package version requirements.
Installing dependencies globally can lead to conflicts between
different projects.

For example, one project might require pandas 1.0 to maintain
compatibility with legacy code, while another needs pandas 2.0 to
utilize newer features. Installing both versions globally could lead to
compatibility issues since Python can only load one version of a
package at a time, as shown in Figure 2.1.

Figure 2.1: Conflicting package version requirements between two projects

To solve this issue, you can create separate virtual environments for
each project. A virtual environment is an isolated Python
environment. When you activate a virtual environment, any packages
you install will be installed only in that environment, not globally on
your system.

As shown in Figure 2.2, project A’s environment contains pandas
version 1 while project B’s environment contains pandas version 2,
preventing any version conflicts between the projects.

Figure 2.2: Using virtual environments to solve conflicting package version requirements

2.2.2 Avoid Specifying Exact Versions for
Dependencies

Specifying exact versions or including all nested dependencies in
your requirements file can lead to rigid setups that block beneficial
updates.

For example, pinning pandas to 1.3.3 in Example 2.1 prevents you
from getting bug fixes in 1.3.4. However, unrestricted versions risk
breaking changes when major versions jump from 1.3.3 to 2.0.0.

Example 2.1: requirements.txt

Example 2.2: requirements.txt (Continued)

pandas==1.3.3

matplotlib==3.4.3

scikit-learn==0.24.2

To solve this issue, use version ranges to automatically receive safe
updates while preventing breaking changes. For example, the range
pandas>=1.3.3,<1.4.0 in Example 2.3 gets you pandas 1.3.4’s
improvements while avoiding potential pandas 1.4.0
incompatibilities.

Example 2.3: requirements.txt

2.2.3 Separate Development and
Production Dependencies

Mixing development and production dependencies creates bloated
deployments and potential conflicts.

Example 2.4 combines development tools (pytest, pre-commit) with
production libraries (scikit-learn, pandas), forcing production
environments to install unnecessary tools.

Example 2.4: requirements.txt

numpy==1.21.2

python-dateutil==2.8.2

pytz==2021.1

six==1.16.0

cycler==0.10.0

kiwisolver==1.3.1

pillow==8.3.2

pyparsing==2.4.7

scipy==1.7.1

joblib==1.0.1

threadpoolctl==2.2.0

...

(potentially dozens more sub-dependencies)

pandas>=1.3.3,<1.4.0

pytest # development

pre-commit # development

scikit-learn # development and production

pandas # development and production

Instead, separate dependencies into two files: requirements.txt for
production and requirements-dev.txt for development. Install the
appropriate file based on your environment to deploy only necessary
packages efficiently.

Example 2.5: requirements.txt

Example 2.6: requirements-dev.txt

Install production dependencies:

Install development dependencies:

2.3 Use uv to Manage Dependencies

uv is a modern Python package installer and resolver written in Rust.
While there are many libraries to manage Python dependencies, uv
stands out for its exceptional speed and reliability.

uv’s implementation in Rust brings several key performance and
reliability advantages:

Installs packages 10-20x faster than pip, making it ideal for
large projects

pandas==1.3.3

matplotlib==3.4.3

scikit-learn==0.24.2

-r requirements.txt

pytest==6.2.5

black==21.9b0

flake8==3.9.2

pip install -r requirements.txt

pip install -r requirements-dev.txt

https://github.com/astral-sh/uv

Uses significantly less memory than other package managers
when handling complex dependency trees

uv also acts as a drop-in replacement for pip, providing faster
package installation and dependency resolution through its
optimized Rust implementation. Below is a quick look at the tools uv
consolidates into one streamlined interface:

uv Functionality Replaces Tool(s)

Dependency management pip, pip-tools, Poetry

Virtual environment creation virtualenv, venv, Poetry

CLI tool execution pipx

Python version management pyenv

Project management Poetry

You can install uv as a standalone executable or as a Python package.
Follow the installation guide to get started.

Let’s explore uv’s functionalities.

2.3.1 Initialize a Project with Ease

uv simplifies project initialization by handling all the setup
complexity for you. Instead of manually creating configuration files
and setting up project structure, uv generates everything needed for
a modern Python project. Create a new project with the uv init
command:

After running the command, the following files will be created:

.python-version: The Python version used in the project.
README.md: The README for the project.

uv init

https://docs.astral.sh/uv/getting-started/installation/

main.py: The main entry point for the project.
pyproject.toml: The project metadata and dependencies (shown
in Example 2.7).

Example 2.7: pyproject.toml

2.3.2 Run a Python Script

uv simplifies script execution by automatically managing the
environment for you. Instead of manually activating virtual
environments, use uv run to execute scripts with the correct
dependencies:

2.3.3 Add Dependencies

uv simplifies dependency management by combining package
installation with project configuration updates. Rather than
separately installing packages and updating requirement files, uv
automatically maintains your pyproject.toml and lock files.

To add new packages, use the uv add command:

Running this command automatically updates your pyproject.toml
file to with the new dependencies:

Example 2.8: pyproject.toml

[project]

name = "test-uv"

version = "0.1.0"

description = "Add your description here"

readme = "README.md"

requires-python = ">=3.11"

dependencies = []

uv run main.py

uv add pandas scikit-learn

The add command also creates a uv.lock file containing the exact
versions of all installed packages and their dependencies.

Example 2.9: uv.lock

Example 2.10: uv.lock (Continued)

2.3.4 Uninstall Packages

[project]

name = "test-uv"

version = "0.1.0"

description = "Add your description here"

readme = "README.md"

requires-python = ">=3.11"

dependencies = [

 "pandas>=2.2.3",

 "scikit-learn>=1.6.1",

 "seaborn>=0.13.2",

]

[[package]]

name = "pandas"

version = "2.2.3"

dependencies = [

 { name = "numpy" },

 { name = "python-dateutil" },

 { name = "pytz" },

 { name = "tzdata" },

]

[[package]]

name = "numpy"

version = "2.2.6"

...

[[package]]

name = "python-dateutil"

version = "2.9.0.post0"

...

When removing packages, uv also automatically uninstalls
dependent packages, thereby freeing up storage space and
minimizing potential conflicts.

Let’s test this out by first installing pandas and scikit-learn:

The dependency tree reveals the shared dependency: both pandas
and scikit-learn depend on NumPy.

test-uv v0.1.0

├── pandas v2.2.3

│ ├── numpy v2.2.6

│ └── python-dateutil v2.9.0.post0

├── scikit-learn v1.6.1

│ ├── joblib v1.5.1

│ └── scipy v1.15.3

...

Now, let’s remove pandas:

Resolved 20 packages in 47ms

Uninstalled 5 packages in 236ms

 - pandas==2.2.3

 - python-dateutil==2.9.0.post0

 - pytz==2025.2

 - six==1.17.0

 - tzdata==2025.2

The tree output confirms uv removed pandas and its exclusive
dependencies (python-dateutil, pytz, tzdata) while preserving
NumPy, which scikit-learn still requires.

test-uv v0.1.0

├── scikit-learn v1.6.1

│ ├── joblib v1.5.1

│ ├── numpy v2.2.6

uv add pandas scikit-learn

uv tree

uv remove pandas

│ ├── scipy v1.15.3

│ │ └── numpy v2.2.6

│ └── threadpoolctl v3.6.0

...

After running the remove command, the pyproject.toml file will be
updated to reflect the changes:

Example 2.11: pyproject.toml

2.3.5 Reproduce an Environment

Lock files enable consistent development environments across
different machines and team members by capturing exact
dependency versions.

When a team member clones your project containing the
pyproject.toml and uv.lock files, they can easily reproduce your exact
environment by running the following command:

Resolved 25 packages in 16ms

Installed 23 packages in 142ms

2.3.6 Separate Dependencies for
Different Purposes

Dependency groups offer a structured approach to managing project
requirements by categorizing packages based on their purpose. uv
provides a convenient way to separate dependencies for different
purposes while keeping track of all dependencies in a single place.

...

dependencies = [

 "scikit-learn>=1.6.1",

]

uv sync

For example, you can add dependencies for a production
environment with the following command:

Running this command will add dependencies under dependencies in
the pyproject.toml file.

Example 2.12: pyproject.toml

Later, when you need to add dependencies for development and
testing, you can use the --dev flag to specify the dependencies for the
dev group:

This will add the development dependencies to your pyproject.toml
file:

Example 2.13: pyproject.toml

Example 2.14: pyproject.toml (Continued)

To install both the development and production dependencies, you
can run the following command:

uv add numpy pandas

dependencies = [

 "pandas>=2.2.3",

 "scikit-learn>=1.6.1",

]

uv add pytest pre-commit --dev

...

dependencies = [

 "pandas>=2.2.3",

 "scikit-learn>=1.6.1",

]

[dependency-groups]

dev = [

 "pre-commit>=4.2.0",

 "pytest>=8.3.5",

]

To exclude the development dependencies, you can use the --no-dev
flag:

2.3.7 Update Python Version

Consider a project that requires Python 3.8, but you need to upgrade
to Python 3.11. Traditional Python version upgrades require
downloading installers, configuring PATH variables, and recreating
virtual environments.

With uv, you can complete this entire process using just two
commands.

2.3.8 Manage Dependencies for Single-
File Scripts

Sometimes, you just want to run a script without installing anything
globally, like when exploring data with matplotlib or seaborn for a
quick one-off task without.

uv makes this effortless by allowing you to declare dependencies
inline and automatically manage an isolated environment tied to the
script itself.

For example, you can run the main.py script with seaborn in an
isolated environment without installing anything globally.

Example 2.15: main.py

uv sync

uv sync --no-dev

uv python install 3.11.2

uv python pin 3.11.2

Example 2.16: main.py (Continued)

2.3.9 Execute and Install CLI Tools

Tools like ruff, black, and isort are often used globally across
projects. Installing them in the base environment can cause version
conflicts or unnecessary clutter.

uvx is a command-line tool that comes with uv for running Python
CLI tools in isolated environments. With uvx, you can run CLI tools
on demand in isolated environments without needing to install them
first or worry about version conflicts.

To run ruff without installing it:

All checks passed!

2.3.10 Replace Pip, pip-tools, and
Virtualenv Seamlessly

import seaborn as sns

import matplotlib.pyplot as plt

Sample data

data = sns.load_dataset("penguins").dropna()

Plot using seaborn only

sns.scatterplot(

 data=data, x="flipper_length_mm", y="body_mass_g"

)

plt.title("Flipper Length vs Body Mass by Species")

plt.show()

uv run --with seaborn main.py

uvx ruff check main.py

https://docs.astral.sh/uv/guides/tools/

If you’re installing packages with pip, freezing requirements, or
managing environments with virtualenv, you can adopt uv without
changing your existing workflow.

uv uses familiar commands but runs them much faster and more
cleanly. Let’s see how to use uv to create a virtual environment,
install packages, and run CLI tools.

Create a virtual environment:

Activate the virtual environment:

Install packages:

Deactivate the virtual environment:

2.4 Key Takeaways

Dependency management is a crucial aspect of Python development,
especially in data science projects where reproducibility and
collaboration are essential. Here are the key takeaways from this
chapter:

1. Best practices:
Use virtual environments to isolate dependencies

uv venv

Unix/macOS

source .venv/bin/activate

Windows

.venv\Scripts\activate

uv pip install pandas scikit-learn

deactivate

Declare your project’s dependencies with flexible version
ranges
Separate development and production dependencies using
dependency groups

2. Key features of uv:
Fast package installation and dependency resolution
Intelligent dependency cleanup that only removes unused
packages
Easy environment reproduction with uv sync
Support for running scripts and CLI tools in isolated
environments
Drop-in replacement for familiar tools like pip and
virtualenv

These practices and uv’s capabilities ensure clean, reproducible, and
efficient Python environments.

3 Python Modules and
Packages

3.1 What Are Python Modules and
Packages?

3.1.1 Python Modules

Python modules are .py files containing reusable code elements like
variables, functions, and classes.

For example, we can create two interconnected modules:

The utils module includes both the configuration and CSV
saving functionality (shown in Example 3.1).
The process_data module imports and uses the save_to_csv
function and config variable from utils (shown in Example 3.2).

Example 3.1: utils.py

Configuration dictionary

config = {'data_path': 'data', 'model_path': 'model'}

CSV saving function

def save_to_csv(file_name, result):

 result.to_csv(file_name, index=False)

 print(f"Data is saved to {file_name}")

Example 3.2: process_data.py

Example 3.3: process_data.py (Continued)

3.1.2 Python Packages

Packages are essentially folders that contain one or more related
code modules.

In the following directory structure, src is a package that contains
three distinct modules: process_data, train_model, and utils.

src

├── process_data.py

├── train_model.py

└── utils.py

3.2 Project Organization Best Practices

3.2.1 Break Down Large Files into Smaller
Modules

from utils import save_to_csv, config

import pandas as pd

from pathlib import Path

Create sample data

X = pd.DataFrame({'a': [1, 2, 3], 'b': [4, 5, 6]})

Use imported config

data_path = config['data_path']

Path(data_path).mkdir(exist_ok=True)

Use imported function

save_to_csv(f'{data_path}/mydata.csv', X)

Consider Example 3.4, which contains multiple distinct
responsibilities:

Data loading
Preprocessing
Model training
Model evaluation

Example 3.4: main.py

Example 3.5: main.py (Continued)

Writing a large file with multiple responsibilities can lead to several
issues:

The file can become long and difficult to manage.
It’s unclear which parts of the code are responsible for which
functionality.
Adding new features or modifying existing ones becomes risky,
because changes might affect other parts of the code.

def load_data(filepath):

 ...

def preprocess_data(df):

 ...

def train_model(X, y):

 ...

def evaluate_model(model, X_test, y_test):

 ...

Main execution

df = load_data('data.csv')

df = preprocess_data(df)

X, y = df.drop('target', axis=1), df['target']

model, X_test, y_test = train_model(X, y)

accuracy = evaluate_model(model, X_test, y_test)

Instead, it’s better to break down large files into smaller modules in
order to make your code easier to read and manage. For example, we
can break down the Example 3.4 to multiple modules:

process.py handles data loading and preprocessing (shown in
Example 3.6).
train_model.py focuses on model training and evaluation (shown
in Example 3.7).
main.py coordinates the execution flow (shown in Example 3.8).

Example 3.6: process.py

Example 3.7: train_model.py

Example 3.8: main.py

As the project grows, you can expand Example 3.7 to Example 3.9
without affecting other modules:

def load_data(filepath):

 ...

def preprocess_data(df):

 ...

def train_model(X, y):

 ...

def evaluate_model(model, X_test, y_test):

 ...

from data_processing import load_data, preprocess_data

from model import train_model, evaluate_model

df = load_data('data.csv')

df = preprocess_data(df)

X = df.drop('target', axis=1)

y = df['target']

model, X_test, y_test = train_model(X, y)

accuracy = evaluate_model(model, X_test, y_test)

Example 3.9: train_model.py

3.2.2 Have a Standardized Project
Structure

Without a standardized project structure, data science projects can
quickly become chaotic and hard to maintain. For example, the
following directory structure places all files in the root directory
without categorization, making it difficult to locate data, models, and
other components.

project_root/

├── data.csv

├── analysis.ipynb

├── model.py

├── utils.py

├── results.txt

├── requirements.txt

└── README.md

A standardized project structure provides a better approach. It helps
team members locate project components quickly, improving
efficiency and consistency. New developers can also orient
themselves to your code more easily.

The following directory structure shows a well-organized data
science project structure:

def train_model(X, y):

 ...

def evaluate_model(model, X_test, y_test):

 ...

Add a new function

def cross_validate(model, X, y, cv=5):

 ...

project_root/

│

├── config/ # Configuration files

├── data/ # Data storage

│ ├── processed/ # Processed data

│ └── raw/ # Original data

├── docs/ # Project documentation

├── models/ # Trained models and artifacts

├── notebooks/ # Jupyter notebooks

├── src/ # Source code

│ ├── __init__.py

│ ├── process_data.py

│ ├── train_model.py

│ └── utils.py

├── tests/ # Test scripts

│ ├── __init__.py

│ ├── test_process_data.py

│ └── test_train_model.py

├── README.md # Project overview

└── pyproject.toml # Dependencies

Let’s go over the folders in this structure:

config/: Contains configuration files (YAML, JSON) for project
settings, hyperparameters, etc.
data/: Stores all data used in the project.
docs/: Holds project documentation, which may include project
overview, methodologies, results, and any other relevant
information.
models/: Stores trained models and related artifacts (e.g.,
serialized model files, model checkpoints).
notebooks/: Contains Jupyter notebooks used for exploratory
data analysis, prototyping, and visualizations.
src/: Contains the main source code for the project.
tests/: Contains test scripts to ensure the reliability of the code.

3.3 Import Best Practices

3.3.1 Avoid Importing Everything

Avoid using wildcard imports or importing entire modules since it
can lead to confusion and potential errors in your code.

Consider the processors.py module that contains a custom
SimpleImputer class. The process_data.py module uses both this
custom SimpleImputer and KNNImputer from scikit-learn with wildcard
imports.

Example 3.10: processors.py

Example 3.11: process_data.py

Using wildcard imports can be problematic for several reasons:

It’s not immediately clear which module SimpleImputer and
KNNImputer come from without knowing the contents of each
module.
Our intention is to use the SimpleImputer class from the
processors module, but the SimpleImputer class in process_data is
from sklearn.impute instead. This is because Python will use the
last imported definition when there are naming conflicts.

Use explicit imports instead to import only necessary classes or
functions from each module. This makes code easier to maintain and
debug by clearly showing which SimpleImputer version is used:

Example 3.12: process_data.py

class SimpleImputer:

 ...

from processors import *

from sklearn.impute import *

simple_imputer = SimpleImputer() # imported from sklearn.impute

iterative_imputer = KNNImputer()

3.3.2 Use Absolute Imports

Python supports both relative and absolute imports for accessing
modules. Absolute imports specify the complete module path from
the project root, while relative imports use dots to navigate directory
hierarchies.

Avoid relative imports since they can cause confusion, potential
errors, and issues when restructuring your project.

Consider a data science project with the following directory
structure:

.

└── project/ # parent directory of src/

 ├── src/ # parent directory of train_model.py

 │ ├── process_data.py

 │ └── train_model.py # you are here

 └── utils/

 └── helpers.py

In the train_model.py module, you can use relative imports:

Example 3.13: project/src/train_model.py

While this works initially, if you move train_model.py into a new
models/ subdirectory:

project/

├── src/ # parent directory of models/

│ ├── process_data.py

from processors import SimpleImputer

from sklearn.impute import KNNImputer

simple_imputer = SimpleImputer() # imported from processors

iterative_imputer = KNNImputer()

from . import process_data # import from src/

from .. import utils # import from project/

│ └── models/ # parent directory of train_model.py

│ └── train_model.py # you are here

└── utils/

 └── helpers.py

The relative import in train_model.py will break because . now refers
to src/models/ instead of src/:

Example 3.14: project/src/train_model.py

With absolute imports, relocating train_model.py won’t cause the
error:

Example 3.15: project/src/train_model.py

3.3.3 Use Main Block

The main block, denoted by if __name__ == "__main__":, prevents
code from executing during imports and separates reusable functions
from script-specific code.

Without a main block, code executes immediately when you import a
module, causing unintended behavior. Consider this example:

process_data.py with no main block (shown in Example 3.16)
main.py that calls the function in process_data.py (shown in
Example 3.17)

Example 3.16: process_data.py

from . import process_data # import from src/models/

ModuleNotFoundError: No module named 'process_data'

from project.src import process_data

from project import utils

def process_data(data: list):

 return [num + 1 for num in data]

Example 3.17: main.py

Running main.py executes the process_data function twice due to calls
in both modules. The execution sequence is:

Importing process_data.py executes the module code, printing
Process data from process_data

Calling the function in main.py prints Process data from __main__

Process data from process_data

Process data from __main__

Figure 3.1 illustrates the flow of execution.

Figure 3.1: Without a main block, modules can be executed unintentionally during import

Instead, add a main block to both modules, as shown in
Example 3.18 and Example 3.19. With the main block in place:

Importing process_data.py defines only the function without
executing the main block code
main.py executes its main block, calling process_data([1, 2, 3])
once and printing "Process data from __main__"

Example 3.18: process_data.py

print(f"Process data from {__name__}")

process_data([1, 2, 3])

from process_data import process_data

print(f"Process data from {__name__}")

process_data([1, 2, 3])

python main.py

Example 3.19: main.py

Now, running main.py produces:

Process data from __main__

Figure 3.2 shows the improved flow of execution when using a main
block.

Figure 3.2: Using a main block to control code execution when importing modules

3.3.4 Group Imports Logically

Standardize the order of imports to make your code more readable
and easier to navigate. You can group imports into three categories:
standard library, third-party, and local.

def process_data(data: list):

 return [num + 1 for num in data]

if __name__ == "__main__":

 # This code is only called when process_data is run directly

 print(f"Process data from {__name__}")

 process_data([1, 2, 3])

from process_data import process_data

if __name__ == "__main__":

 # This code is only called when main is run directly

 print(f"Process data from {__name__}")

 process_data([1, 2, 3])

python main.py

The following code demonstrates this well-organized import
structure:

3.3.5 Avoid Circular Imports

Circular imports occur when two or more modules import each
other, creating a dependency loop that can cause the program to fail
to start or behave unexpectedly.

In the following example, data_loader.py and data_processor.py both
import from each other, creating a circular import. This circular
import can lead to ImportError or other unexpected behavior, making
debugging difficult.

Example 3.20: data_loader.py

Standard library imports

import datetime

import json

import os

import sys

Third-party imports

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

import seaborn as sns

from sklearn.linear_model import LogisticRegression

from sklearn.metrics import accuracy_score, confusion_matrix

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import StandardScaler

Local application imports

from utils import helpers

from data_processor import process_data

def load_data():

 # Load data from a CSV file

Example 3.21: data_processor.py

Instead, restructure your code to break circular imports. main.py
coordinates data_loader.py and data_processor.py, eliminating the
circular dependencies.

Example 3.22: main.py

Example 3.23: data_loader.py

Example 3.24: data_processor.py

 data = pd.read_csv("dataset.csv")

 return process_data(data)

from data_loader import load_data

def process_data(data):

 # Process the data

 processed = data.dropna()

 return processed

def main():

 data = load_data()

 # Further analysis...

from data_loader import load_data

from data_processor import process_data

def main():

 raw_data = load_data()

 processed_data = process_data(raw_data)

 # Further analysis...

if __name__ == "__main__":

 main()

import pandas as pd

def load_data():

 # Load data from a CSV file

 return pd.read_csv("dataset.csv")

3.4 Key Takeaways

Python modules and packages are essential tools for organizing and
structuring your code effectively. Here are the key takeaways from
this chapter:

1. Understanding modules and packages:
Modules are .py files containing reusable code (variables,
functions, classes)
Packages are directories containing related modules

2. Project organization best practices:
Break down large files into smaller, focused modules
Use a standardized project structure (src/, tests/, data/,
etc.)
Keep related functionality together in the same module
Use clear, descriptive names for modules and packages

3. Import best practices:
Avoid wildcard imports (from module import *)
Use explicit imports to prevent naming conflicts
Group imports logically (standard library, third-party,
local)
Use absolute imports instead of relative imports
Avoid circular dependencies between modules

4. Code execution control:
Use if __name__ == "__main__": to control script execution
Separate reusable code from script-specific code
Prevent unintended code execution during imports
Make modules both importable and executable

By following these practices, you can create well-organized,
maintainable Python projects that are easier to understand, test, and

def process_data(data):

 # Process the data

 return data.dropna()

collaborate on.

4 Python Variables

4.1 What Are Variables?

Variables are used to store data in a program. To define a variable in
Python, use the assignment operator = with the variable name on the
left and the value on the right.

Here are examples of different types of values that variables can
store:

Numbers

age = 25

Strings

name = "Alice"

Lists

fruits = ["apple", "banana", "orange"]

Dictionaries

student = {"name": "Bob", "age": 20, "grades": [85, 90, 88]}

Sets

unique_numbers = {1, 2, 3, 4, 5}

Tuples

coordinates = (10, 20)

4.2 Choose the Right Python Collection

Python collections are built-in data structures that allow you to store
multiple items in a single variable. Python provides several collection
types, each with unique characteristics that make each one suitable
for different coding scenarios. Understanding the differences
between each type of collection helps you choose the most
appropriate collection for your specific needs.

4.2.1 Lists: Ordered, Mutable Sequences

Use lists when you need:

An ordered sequence of items
To modify the collection (add, remove, or change items)
To access elements by their position
To allow duplicate elements

Tracking a sequence of data points in a time series is a good use case
for a list because it is ordered, can be modified, and allows duplicate
elements.

Temperature on day 3: 71.8°F

List of daily temperatures

temperatures = [72.5, 73.1, 71.8, 74.2, 73.5]

Add a new temperature

temperatures.append(72.9)

Access temperature by position

print(f"Temperature on day 3: {temperatures[2]}°F")

Modify a temperature

temperatures[0] = 73.0

4.2.2 Tuples: Ordered, Immutable
Sequences

Use tuples when you need:

An ordered sequence that cannot be changed
To ensure data integrity
To use the collection as a dictionary key
To allow duplicate elements

Storing coordinates is a good use case for a tuple because it is
ordered, cannot be changed, and might be used as a dictionary key.

Error: 'tuple' object does not support item assignment

4.2.3 Sets: Unordered, Mutable
Collections of Unique Elements

Use sets when you need:

To store unique elements
Fast membership testing

Tuple of coordinates

point = (10, 20)

Can't modify coordinates

try:

 point[0] = 15 # This will raise an error

except TypeError as e:

 print(f"Error: {e}")

Can be used as a dictionary key

points = {

 (10, 20): "Point A",

 (30, 40): "Point B",

}

To perform set operations (union, intersection, difference)
To remove duplicates from a sequence

Tracking unique visitors to a website is a good use case for a set
because it is unordered, can be modified, and does not allow
duplicate elements.

Has user1 visited?: True

Unique visitors: {'user2', 'user3', 'user1'}

4.2.4 Dictionaries: Key-Value Pairs

Use dictionaries when you need:

To associate values with unique keys
Fast lookups by key
To store related data together
To count occurrences of items

Example: Storing user information:

Set of unique visitors

visitors = {"user1", "user2", "user3"}

Add a new visitor

visitors.add("user4")

Check if a user has visited

print(f"Has user1 visited?: {'user1' in visitors}")

Remove duplicates from a list

all_visits = ["user1", "user2", "user1", "user3", "user2"]

unique_visitors = set(all_visits)

print(f"Unique visitors: {unique_visitors}")

Dictionary of user information

user = {

 "name": "John",

 "age": 30,

User's name: John

Storing user information is a good use case for a dictionary because
the data is unordered, can be modified, and allows lookup by key.

This table summarizes the key characteristics of each collection type:

Collection Ordered Mutable Duplicates Key-Value

List Yes Yes Yes No

Tuple Yes No Yes No

Set No Yes No No

Dictionary No Yes No (keys) Yes

4.3 Best Practices for Python Variables

4.3.1 Use Descriptive Variable Names

Use descriptive variable names that clearly indicate the purpose or
content of each variable. Descriptive names make your code self-
documenting and reduce the need for extensive comments.

 "email": "john@example.com"

}

Access information by key

print(f"User's name: {user['name']}")

Update information

user["age"] = 31

Add new information

user["location"] = "New York"

This example from the Kaggle notebook How I made top 0.3% on a
Kaggle competition demonstrates the problem: variables ls, m, and l
require extensive code analysis to understand their meaning.

To improve readability, use descriptive variable names:

Line 1
ls becomes feature_list to indicate the list of features to be squared.
Line 2
m becomes column_count to indicate the number of columns in the
DataFrame.
Line 3
l becomes feature_name to indicate the name of the feature to be
squared.
Line 4

def squares(df, ls):

 m = df.shape[1]

 for l in ls:

 df = df.assign(newcol=pd.Series(df[l]*df[l]).values)

 df.columns.values[m] = l + '_sq'

 m += 1

 return df

squared_features = ['LotFrontage_log', 'GrLivArea_log']

df = squares(df, squared_features)

def calculate_squared_features(df, feature_list):

 column_count = df.shape[1]

 for feature_name in feature_list:

 squared_feature = df[feature_name]**2

 df = df.assign(newcol=squared_feature)

 df.columns.values[column_count] = feature_name + '_sq'

 column_count += 1

 return df

features_to_square = ['LotFrontage_log', 'GrLivArea_log']

squared_df = calculate_squared_features(df, features_to_square)

https://www.kaggle.com/code/lavanyashukla01/how-i-made-top-0-3-on-a-kaggle-competition

df[feature_name]**2 is assigned to squared_feature to make the code
more readable.
Line 12
The return value is assigned to squared_df to indicate the name of the
DataFrame that contains the squared features.

While we generally encourage descriptive variable names, using df is considered good
practice because it is a well-established convention that most data scientists recognize.

If you need to work with multiple DataFrames, you can add descriptive prefixes or
suffixes (e.g., raw_df, cleaned_df, sales_df) to distinguish between them.

4.3.2 Avoid Reserved Keywords

Python has a set of reserved keywords that have special meaning in
the language and cannot be used as variable or function names.
These include:

Control flow keywords: if, else, elif, for, while, break, continue,
return

Definition keywords: def, class, lambda
Logical keywords: and, or, not, is, in
Value keywords: True, False, None
Other keywords: import, from, as, try, except, finally, raise, with,
global, nonlocal, assert, del, pass, yield

Avoid using Python’s reserved keywords as variable names to
prevent syntax errors.

In the following example, class is a reserved keyword in Python.
Using it as variable name causes syntax errors.

Why use df as the name of a DataFrame?

import pandas as pd

SyntaxError: invalid syntax

To fix these issues, use descriptive names that are not reserved
keywords:

4.3.3 Use Uppercase for Constants

A constant is like a variable, but is used to store values that don’t
change while a program runs. For example, PI = 3.14159 represents a
mathematical constant that never changes during program
execution.

Use uppercase names for constants to distinguish them from regular
variables and improve code maintainability. This naming convention
signals that values shouldn’t change during program execution.

The following example demonstrates why hard-coded values like
0.01, 1000000, and 30 cause maintenance issues:

The values provide no context about their purpose.
Modifying the interest rate from 0.01 to 0.02 forces you to locate
and replace every instance manually. This is error-prone and
time-consuming.

Problematic use of reserved keywords

class = pd.read_csv('data/classes.csv')

import pandas as pd

class_df = pd.read_csv('data/classes.csv')

def calculate_loan_payment(principal, years):

 num_payments = years * 12

 if principal > 1000000:

 return "Loan amount too high"

 if years > 30:

 return "Term too long"

 return (

To improve readability and maintainability, use meaningful
uppercase names instead of hard-coded values:

While constants should not change during program execution, they can be modified
before the program starts running.

For example, you can change the values of MAX_LOAN_AMOUNT before the program starts
running:

4.3.4 Use Plural Nouns for Collections

Use plural nouns for collections to clearly indicate they contain
multiple items.

 principal

 * (0.01 * (1 + 0.01) ** num_payments)

 / ((1 + 0.01) ** num_payments - 1)

)

MONTHLY_INTEREST_RATE = 0.01

GROWTH_FACTOR = 1 + MONTHLY_INTEREST_RATE

MAX_LOAN_AMOUNT = 1000000

MAX_LOAN_TERM = 30

def calculate_loan_payment(principal, years):

 num_payments = years * 12

 if principal > MAX_LOAN_AMOUNT:

 return "Loan amount too high"

 if years > MAX_LOAN_TERM:

 return "Term too long"

 return (

 principal

 * (MONTHLY_INTEREST_RATE * GROWTH_FACTOR**num_payments)

 / (GROWTH_FACTOR**num_payments - 1)

)

Can You Modify Constants?

MAX_LOAN_AMOUNT = 2_000_000 # Changed from 1_000_000

This example shows how singular naming confuses developers. The
variable city contains multiple cities, but its name implies a single
value, resulting in the flawed logic city == 'New York' that compares
a list to a string.

Replace singular names with plural forms to eliminate confusion.
The name cities signals multiple values, making the logic 'New York'
in cities self-explanatory.

Big Apple!

4.3.5 Name Slice Indices

Use descriptive names for slice indices to make your code more
readable and eliminate confusion about what specific index ranges
represent.

The slice indices 4 and 4: in this price analysis example lack context,
making it difficult to understand what data ranges they represent. d

2.5

Problematic use of singular nouns for collections

city = ['New York', 'London', 'Tokyo', 'Paris', 'Sydney']

if city == 'New York':

 # This won't work as expected if city is a list

 print("Big Apple!")

Improved code using plural nouns for collections

cities = ['New York', 'London', 'Tokyo', 'Paris', 'Sydney']

if 'New York' in cities:

 print("Big Apple!")

prices = [5, 3, 5, 4, 5, 3, 3.5, 3]

price_diff = sum(prices[:4]) - sum(prices[4:])

print(price_diff)

To improve readability, replace numeric indices with descriptive slice
objects using the slice function. This example creates JANUARY and
FEBRUARY variables to represent specific data ranges.

Price difference between January and February: 2.5

4.3.6 Use Underscore for Throwaway
Variables

Use underscores for unused variables to keep code clean and signal
you’re ignoring them.

In the following example, filename is a throwaway variable that is not
used.

/home/user/data/project/new_data.csv

prices = [5, 3, 5, 4, 5, 3, 3.5, 3]

Create slice objects to represent specific ranges

JANUARY = slice(0, 4) # First 4 elements

FEBRUARY = slice(4, len(prices)) # Remaining elements

price_diff = sum(prices[JANUARY]) - sum(prices[FEBRUARY])

print(f"Price difference between January and February:
{price_diff}")

import os

full_path = '/home/user/data/project/data.csv'

Split the path into directory and filename

directory, filename = os.path.split(full_path)

Add a new file to directory

new_file_name = 'new_data.csv'

new_file_path = os.path.join(directory, new_file_name)

print(new_file_path)

To signal that this value is intentionally ignored, use the underscore
(_) instead of filename.

/home/user/data/project/new_data.csv

4.3.7 Signal Private Variables with
Underscores

Use underscore prefixes to mark variables as private and prevent
external access. This Python convention tells other developers the
variable is for internal use only.

This bank account example shows the problem: without privacy
signals, other developers can directly modify the balance, creating
security risks.

import os

full_path = '/home/user/data/project/data.csv'

Split the path into directory and filename

directory, _ = os.path.split(full_path)

Add a new file to directory

new_file_name = 'new_data.csv'

new_file_path = os.path.join(directory, new_file_name)

print(new_file_path)

class Bank:

 def __init__(self, account_number, initial_balance):

 self.account_number = account_number

 self.balance = initial_balance

Bad: Accessing the balance directly from outside the class

bank_account = Bank("123456789", 200)

print(f"Initial balance: {bank_account.balance}")

Bad: Modifying the balance directly from outside the class

Initial balance: 200

Balance after deposit: 700

Use underscore prefix (_) to mark the balance as private and provide
access through methods instead of direct access.

Initial balance: 200

4.3.8 Avoid Variable Repurposing

Use distinct variable names for different data states to prevent
confusion. Repurposing variables causes these issues:

1. Loss of History: You can’t easily see what the data looked like
at each step

2. Debugging Difficulty: If something goes wrong, it’s hard to
identify which transformation caused the issue

3. Code Readability: The meaning of the variable changes
throughout the code, making it harder to understand

4. Accidental Modifications: You might accidentally use the
wrong version of the variable

bank_account.balance += 500

print(f"Balance after deposit: {bank_account.balance}")

class Bank:

 def __init__(self, account_number, initial_balance):

 self.account_number = account_number

 self._balance = initial_balance # Private variable

 def get_balance(self):

 return self._balance

bank_account = Bank("123456789", 200)

print(f"Initial balance: {bank_account.get_balance()}")

This example shows how repurposing df creates confusion about
what data the variable contains at each transformation step.

To clearly show what data each step produces, use distinct variables
for each transformation.

4.4 Key Takeaways

1. Choose the right collection type:
Use lists for ordered, mutable sequences
Use tuples for immutable sequences
Use sets for unique elements and fast membership testing
Use dictionaries for key-value pairs

2. Best practices:
Use descriptive names that clearly indicate purpose
Avoid reserved keywords
Use uppercase for constants
Use plural nouns for collections
Use underscore for throwaway variables
Prefix private variables with underscore

import pandas as pd

Problematic code with variable repurposing

df = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})

df = df.assign(c=lambda x: x["a"] + x["b"]) # has a new column

df = df[df["c"] > 5] # df now has filtered rows

df = df.drop("b", axis=1) # df now has different columns

What's in df now? It's hard to tell without checking each step

import pandas as pd

Improved code with distinct variables

original_df = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})

df_with_sum = original_df.assign(c=lambda x: x["a"] + x["b"])

filtered_df = df_with_sum[df_with_sum["c"] > 5]

final_df = filtered_df.drop("b", axis=1)

Use distinct variables for different states

5 Python Functions

5.1 What Are Python Functions?

Functions are reusable blocks of code that perform specific tasks.
They help you organize your code, make it more readable, and
promote code reuse.

To define a function in Python, use the def keyword followed by the
function name and parentheses. The function body is indented
below.

Here’s an example of a function commonly used in data science:

5.2 Why Are Python Functions Essential?

5.2.1

Functions streamline development by turning repetitive tasks into
single, reusable calls. Reusable functions cut coding time, reduce
copy-paste errors, and centralize logic for easier updates.

def standardize_features(X):

 """Standardize the features in the input data."""

 X_standardized = (X - X.mean()) / X.std()

 return X_standardized

In the following example, the same preprocessing logic is repeated
for both the training and test sets, forcing you to update the same
logic in multiple places whenever you modify the preprocessing
steps.

To avoid this problem, encapsulate the data preprocessing logic in a
function and reuse it across your data science project:

5.2.2 Improve Code Readability

Functions improve code readability by replacing complex inline
operations with descriptive function names.

The following example demonstrates the readability problem:
complex data processing steps buried under verbose comments that
make the core logic harder to follow.

import numpy as np

X_train = np.array([5, 10, 15, 20, 25])

X_test = np.array([8, 12, 18, 22, 28])

X_train_standardized = (X_train - X_train.mean()) / X_train.std()

X_test_standardized = (X_test - X_train.mean()) / X_train.std()

def standardize_features(X):

 return (X - X.mean()) / X.std()

X_train = np.array([5, 10, 15, 20, 25])

X_test = np.array([8, 12, 18, 22, 28])

X_train_standardized = standardize_features(X_train)

X_test_standardized = standardize_features(X_test)

import pandas as pd

from sklearn.preprocessing import StandardScaler

from sklearn.ensemble import RandomForestRegressor

Load the data from a CSV file

By breaking data processing into named functions, each step
becomes self-documenting with a clear purpose, eliminating verbose
comments and making the workflow immediately understandable.

data = pd.read_csv("data/dataset.csv")

Handle missing values by filling them with 0

data = data.fillna(0)

Encode the categorical variable 'category'

data["category"] = data["category"].map(

 {"A": 0, "B": 1, "C": 2}

)

Using the StandardScaler to standardize the data

scaler = StandardScaler()

data["feature1"] = scaler.fit_transform(

 data["feature1"].values.reshape(-1, 1)

)

def load_data():

 ...

 return data

def handle_missing_values(data):

 ...

 return data

def encode_categorical_variables(data):

 ...

 return data

def scale_numeric_features(data, features_to_scale):

 ...

 return data

def process_data(data, categorical_columns, numeric_columns):

 data = handle_missing_values(data)

 data = encode_categorical_variables(data)

 data = scale_numeric_features(data, numeric_columns)

 return data

5.2.3 Hide Implementation Details

Functions hide implementation details, keeping your code focused
on high-level logic rather than technical specifics.

The following code exposes database implementation details, making
readers examine connection strings and INSERT statements to
understand the function’s purpose.

Use a function like save_user to encapsulate database operations,
letting users save data without knowing how the database connection
works.

import sqlite3

Save a new user

username = "john_doe"

email = "john@example.com"

with sqlite3.connect("data/users.db") as conn:

 try:

 cursor = conn.cursor()

 cursor.execute(

 "INSERT INTO users (username, email) VALUES (?, ?)",

 (username, email),

)

 conn.commit()

 print("User saved successfully")

 except sqlite3.Error:

 print("Failed to save user")

import sqlite3

def save_user(username, email):

 with sqlite3.connect("data/users.db") as conn:

 try:

 cursor = conn.cursor()

 cursor.execute(

User saved successfully

5.3 Best Practices for Python Functions

5.3.1 Use Descriptive Verb-Based Names

Apply snake_case, descriptive, verb-based function names that
reflect their purpose to enhance code clarity and standardize your
codebase. Snake_case is a naming convention in which spaces are
replaced with underscores and all letters are lowercase.

In the following code, function names are inconsistent and don’t
clearly indicate their actions.

 "INSERT INTO users (username, email) VALUES (?,
?)",

 (username, email),

)

 conn.commit()

 print("User saved successfully")

 except sqlite3.Error:

 print("Failed to save user")

Users can call this function without understanding database
details

save_user("john_doe", "john@example.com")

def data_clean(df):

 return df.dropna()

def transform(s):

 return np.log(s)

def above_mean(df, column):

 return df[df[column] > df[column].mean()]

To improve these unclear function names, use descriptive, verb-
based function names in snake_case that reflect their purpose. That
approach makes the code more self-documenting and easier to
maintain.

5.3.2 Keep Functions Focused

Use small, single-purpose functions to make debugging easier,
reduce code duplication, and enhance reusability while simplifying
modifications to your codebase.

Consider this example of a large, multi-purpose function that
performs multiple operations, making it hard to isolate bugs and
modify individual steps.

def remove_missing_values(df):

 return df.dropna()

def apply_log_transformation(s):

 return np.log(s)

def filter_values_above_mean(df, column):

 return df[df[column] > df[column].mean()]

from sklearn.preprocessing import StandardScaler

def process_sales_data(df):

 # Remove missing values

 df = df.dropna()

 # Log transform sales

 df["log_sales"] = np.log1p(df["Sales"])

 # Encode categorical variables

 df = pd.get_dummies(df, columns=["Category", "Region"])

To solve these problems, break the function into smaller, focused
functions:

Then chain these functions using the pipe method in
process_sales_data. Each function handles one operation while the
main function coordinates the workflow.

 # Normalize numeric features

 scaler = StandardScaler()

 num_columns = ["Sales", "Quantity"]

 df[num_columns] = scaler.fit_transform(df[num_columns])

 return df

def remove_missing_values(df):

 return df.dropna()

def log_transform_sales(df):

 return df.assign(

 log_sales=lambda x: np.log1p(x["Sales"])

)

def encode_categorical_variables(df, cat_columns):

 return pd.get_dummies(df, columns=cat_columns)

def normalize_numeric_features(df, num_columns):

 scaler = StandardScaler()

 df = df.copy()

 df[num_columns] = scaler.fit_transform(df[num_columns])

 return df

def process_sales_data(df):

 return (

 df.pipe(remove_missing_values)

 .pipe(log_transform_sales)

 .pipe(

 encode_categorical_variables,

5.3.3 Use Type Hints

Enhance your Python functions with type hints to prevent runtime
errors and enable better IDE support with autocomplete and error
detection.

In the following example, the calculate_average_rating function lacks
type hints, making it unclear what types the parameters expect or
what the function returns:

Improve the function by adding type hints that specify:

ratings as a list of dictionaries with integer values
product_id as an integer
the return type as either a float or None

 cat_columns=["Category", "Region"],

)

 .pipe(

 normalize_numeric_features,

 num_columns=["Sales", "Quantity"],

)

)

def calculate_average_rating(ratings, product_id):

 product_ratings = [

 r for r in ratings if r["product_id"] == product_id

]

 if not product_ratings:

 return None

 total_score = sum(r["score"] for r in product_ratings)

 return total_score / len(product_ratings)

def calculate_average_rating(

 ratings: list[dict[str, int]], product_id: int

) -> float | None:

 ...

5.3.4 Write Clear and Helpful Docstrings

Docstrings are a simple way to add helpful documentation to your
Python code. Docstrings are valuable for documenting complex
behavior, parameters, return values, and examples that aren’t
immediately obvious from the function signature alone.

Consider this function without a docstring. The function has a
descriptive name and type hints, but critical details remain unclear
from the function signature:

The expected format of the text parameter (pipe-delimited key-
value pairs)
The structure of the returned dictionary (keys from even indices,
values from odd indices)

Add a docstring to explain how the function works. The docstring
provides a clear description of the function’s purpose, parameter
types, return value, potential exceptions, and usage example.

def parse_pipe_delimited_text(text: str) -> dict:

 parts = text.split("|")

 if len(parts) % 2 != 0:

 raise ValueError(

 "Input string must have an even number of parts"

)

 return {parts[i]: parts[i + 1] for i in range(0, len(parts),
2)}

def parse_pipe_delimited_text(text: str) -> dict:

 """

 Parse a pipe-delimited string into a dictionary.

 Parameters

 text: str

 A pipe-delimited string to parse

 Returns

For simple functions with clear names and type hints, extensive docstrings can be
unnecessary and even distracting. For example, the square function below is a simple
function with a clear name and type hint. Thus, the docstring is unnecessary.

Documentation isn’t a substitute for writing unclear code. Focus on writing clear, self-
documenting code first, then add docstrings only when they provide additional value.

5.3.5 Use Function Parameters Instead of
Global Variables

Use function parameters to pass necessary data instead of relying on
global variables. Global variables make your code harder to read and
can produce unexpected results.

 dict

 Dictionary with even indices as keys, odd indices as values

 Raises

 ValueError: If the input string has an odd number of parts

 Examples

 >>> parse_pipe_delimited_text("name|John|age|30")

 {'name': 'John', 'age': '30'}

 """

 parts = text.split("|")

 if len(parts) % 2 != 0:

 raise ValueError(

 "Input string must have an even number of parts"

)

 return {parts[i]: parts[i + 1] for i in range(0, len(parts),
2)}

Don’t Overuse Docstrings

def square(x: float) -> float:
 return x * x

Consider this example that relies on global variables taken from the
Kaggle notebook How I made top 0.3% on a Kaggle competition:

Mean RMSE: 1.093

Using global variables like this can lead to several issues:

1. Unpredictable Behavior: The function’s output depends on
an external state that can be modified anywhere in the code,
making it hard to predict the function’s behavior.

Mean RMSE: 1.393

from sklearn.linear_model import LinearRegression

from sklearn.model_selection import KFold, cross_val_score

import numpy as np

X = np.array([1, 2, 3, 4, 5]).reshape(-1, 1)

train_labels = np.array([2, 4, 5, 4, 5])

kf = KFold(n_splits=5, random_state=42, shuffle=True)

model = LinearRegression()

def cv_rmse(model, X):

 return np.sqrt(

 -cross_val_score(

 model, X, train_labels,

 scoring="neg_mean_squared_error", cv=kf

)

)

Calculate RMSE scores

scores = cv_rmse(model=model, X=X)

print(f"Mean RMSE: {scores.mean():.3f}")

Change the global variable

kf = KFold(n_splits=2, random_state=42, shuffle=True)

The function's output will change

scores = cv_rmse(model=model, X=X)

print(f"Mean RMSE: {scores.mean():.3f}")

https://www.kaggle.com/code/lavanyashukla01/how-i-made-top-0-3-on-a-kaggle-competition

2. Testing Difficulties: Tests must set up global state first and
can interfere with each other.

3. Reusability: The function is hard to reuse in different contexts
because it is tightly coupled to a global variable

4. Maintainability Issues: Changes to global variables require
carefully checking all dependent code to avoid breaking
functionality

5. Poor Readability: Functions using global state fail to clearly
communicate their dependencies through their interfaces

6. Debugging Challenges: When bugs occur, tracking down
which part of the code modified the global state becomes time-
consuming

To avoid these issues, pass global variables as parameters instead:

5.3.6 Avoid Modifying Input Parameters

def cv_rmse(model, X):

 rmse = np.sqrt(

 -cross_val_score(

 model, X,

 train_labels, # What is this?

 scoring="neg_mean_squared_error",

 cv=kf, # What is this?

)

)

return rmse

def cv_rmse(model, X, train_labels, kf):

 rmse = np.sqrt(

 -cross_val_score(

 model, X, train_labels,

 scoring="neg_mean_squared_error", cv=kf

)

)

 return rmse

Modifying input parameters directly can corrupt the original data
and cause unexpected behavior in other parts of your code.

Consider the following example where we modify a DataFrame in-
place by overwriting the specified columns with normalized values:

Calling normalize_data overwrites the original DataFrame values,
making the original data unavailable for subsequent analysis steps.

Original data:

 temperature humidity pressure

0 25.5 0.212019 1013.2

1 27.8 -1.089008 1015.7

2 23.2 0.876989 1012.8

Instead, create a copy of the input data with df.copy() and return the
new DataFrame to avoid modifying the original data:

def normalize_data(df: pd.DataFrame, columns: list) ->
pd.DataFrame:

 df[columns] = (

 df[columns] - df[columns].mean()

) / df[columns].std()

 return df

data = pd.DataFrame(

 {

 "temperature": [25.5, 27.8, 23.2],

 "humidity": [60.0, 55.5, 62.3],

 "pressure": [1013.2, 1015.7, 1012.8],

 }

)

normalized_data = normalize_data(data, columns=["humidity"])

print(f"Original data:\n{data.head()}")

def normalize_data(df: pd.DataFrame, columns: list) ->
pd.DataFrame:

 df = df.copy()

 df[columns] = (

 df[columns] - df[columns].mean()

Original data:

 temperature humidity pressure

0 25.5 60.0 1013.2

1 27.8 55.5 1015.7

2 23.2 62.3 1012.8

5.3.7 Avoid Using Flags As Parameters

Create separate, purpose-specific functions instead of using boolean
flags as parameters. Boolean flags increase complexity and make it
difficult to understand what the function does without examining the
implementation.

Consider this example of a data preprocessing function with boolean
flags:

) / df[columns].std()

 return df

data = pd.DataFrame(

 {

 "temperature": [25.5, 27.8, 23.2],

 "humidity": [60.0, 55.5, 62.3],

 "pressure": [1013.2, 1015.7, 1012.8],

 }

)

normalized_data = normalize_data(data, columns=["humidity"])

print(f"Original data:\n{data}")

def preprocess_data(

 df: pd.DataFrame,

 fill_missing: bool = False,

 normalize: bool = False,

) -> pd.DataFrame:

 if fill_missing:

 df = df.fillna(df.mean())

 if normalize:

 df = (df - df.mean()) / df.std()

To fill missing values only, you can set fill_missing to True and
normalize to False.

This function may seem convenient at first, but a function like this
quickly becomes harder to maintain as you add more functionality.
For instance, introducing a new preprocessing step, like removing
outliers, would require adding yet another boolean flag.

Instead, create separate functions for each preprocessing task and
compose them as needed. Start with splitting the preprocess_data
function into smaller functions.

 return df

df = pd.read_csv("data/sample.csv")

cleaned_df = preprocess_data(df, fill_missing=True,
normalize=False)

def preprocess_data(

 df: pd.DataFrame,

 fill_missing: bool = False,

 normalize: bool = False,

 remove_outliers: bool = False # New flag

) -> pd.DataFrame:

 if fill_missing:

 df = df.fillna(df.mean())

 if normalize:

 df = (df - df.mean()) / df.std()

 if remove_outliers: # New condition

 df = df[df.apply(lambda x: abs(x - x.mean()) <= 3 *
x.std())]

 return df

import pandas as pd

import numpy as np

def fill_missing_values(df: pd.DataFrame) -> pd.DataFrame:

 return df.fillna(df.mean())

def normalize_data(df: pd.DataFrame) -> pd.DataFrame:

 return (df - df.mean()) / df.std()

Now, you can create a pipeline by passing functions as a list to
preprocess_data.

5.3.8 Extract Common Logic Into Utilities

Create reusable utility functions to eliminate code duplication and
ensure consistent behavior when you need to modify shared logic.

The following functions repeat the same text cleaning steps:
converting to lowercase, removing special characters, and trimming
whitespace:

Although clean_text_data processes DataFrames and
preprocess_user_input handles strings, both functions duplicate the

def preprocess_data(df: pd.DataFrame, steps: list) -> pd.DataFrame:

 for step in steps:

 df = step(df)

 return df

df = pd.read_csv("data/sample.csv")

cleaning_steps = [normalize_data, fill_missing_values]

cleaned_df = preprocess_data(df, cleaning_steps)

def clean_text_data(df: pd.DataFrame) -> pd.DataFrame:

 df["text"] = df["text"].str.lower()

 df["text"] = df["text"].str.replace(

 "[^a-zA-Z\s]", "", regex=True

)

 df["text"] = df["text"].str.strip()

 return df

def preprocess_user_input(text: str) -> str:

 text = text.lower()

 text = "".join(

 char for char in text if char.isalnum() or char.isspace()

)

 text = text.strip()

 return text

same cleaning logic. Modifying the cleaning approach requires
updating both functions, risking inconsistencies if one gets missed.

To eliminate code duplication, create a reusable clean_text utility
function that both clean_text_data and preprocess_user_input can use.

5.4 Advanced Function Toolkit

5.4.1 Lambda Functions

Lambda functions in Python are small, anonymous functions defined
using the lambda keyword, allowing for the creation of one-line
function objects.

Use lambda functions when you need a simple function for a short
period, particularly in higher-order functions like map(), filter(), or

df = pd.read_csv("data/comments.csv")

cleaned_df = clean_text_data(df)

user_input = "Hello, World! 123"

cleaned_input = preprocess_user_input(user_input)

def clean_text(text: str) -> str:

 text = text.lower()

 text = "".join(

 char for char in text if char.isalnum() or char.isspace()

)

 return text.strip()

def clean_text_data(df: pd.DataFrame) -> pd.DataFrame:

 df["text"] = df["text"].apply(clean_text)

 return df

def preprocess_user_input(text: str) -> str:

 return clean_text(text)

as arguments to other functions.

Here are some examples of using lambda functions:

1. Using lambda with map() to square numbers in a list:

[1, 4, 9, 16, 25]

2. Using lambda with filter() to get even numbers from a list:

[2, 4, 6, 8, 10]

3. Using lambda in sorting a list of tuples based on the second
element:

[('Charlie', 22), ('Alice', 25), ('Bob', 30)]

5.4.2 Partial Functions

A partial function is a technique from functools.partial that allows
you to create a new function by fixing some arguments of an existing
function. Use partial functions when you want to reduce the number
of required arguments for function calls.

For example, if you frequently use the cv_rmse function with the same
dataset and cross-validation strategy, you can create a partial

numbers = [1, 2, 3, 4, 5]

squared = list(map(lambda x: x**2, numbers))

print(squared)

numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

even_numbers = list(filter(lambda x: x % 2 == 0, numbers))

print(even_numbers)

data = [('Alice', 25), ('Bob', 30), ('Charlie', 22)]

sorted_data = sorted(data, key=lambda x: x[1])

print(sorted_data)

function called cv_rmse_with_data that fixes the dataset and cross-
validation strategy.

You can now easily apply consistent cross-validation across different
models without repeating the same parameters.

5.4.3 *args and **kwargs

*args and **kwargs are special syntax in Python used to pass a
variable number of arguments to a function.

Use *args to pass a variable number of non-keyword arguments to a
function. In the example below, *transformers allows
transform_pipeline to accept multiple transformation functions.

from functools import partial

Create sample data

X = np.array([1, 2, 3, 4, 5]).reshape(-1, 1)

train_labels = np.array([2, 4, 5, 4, 5])

kf = KFold(n_splits=5, random_state=42, shuffle=True)

Create a partial function with fixed X, train_labels, and kf

cv_rmse_with_data = partial(

 cv_rmse, X=X, train_labels=train_labels, kf=kf

)

Call the partial function with Linear Regression

linear_scores = cv_rmse_with_data(model=LinearRegression())

Call the partial function with Ridge Regression

ridge_scores = cv_rmse_with_data(model=Ridge(alpha=0.5))

import numpy as np

from typing import Callable

def transform_pipeline(

 data: np.ndarray, *transformers: Callable

The flexible design lets you add log_transform, standardize, or any
number of transformation functions without changing
transform_pipeline.

Use **kwargs to pass a variable number of keyword arguments to a
function. In the example below, **transformers allows
transform_pipeline to accept any number of named transformation
functions.

) -> np.ndarray:

 for transformer in transformers:

 data = transformer(data)

 return data

def log_transform(data: np.ndarray) -> np.ndarray:

 return np.log1p(data)

def standardize(data: np.ndarray) -> np.ndarray:

 return (data - data.mean()) / data.std()

raw_data = np.random.rand(100, 5) * 100

transformed_data = transform_pipeline(

 raw_data, log_transform, standardize

)

import numpy as np

from typing import Callable

def transform_pipeline(

 data: np.ndarray, **transformers: dict[str, Callable]

) -> np.ndarray:

 for transformer_name, transformer_func in transformers.items():

 if not callable(transformer_func):

 raise ValueError(

 f"{transformer_name} is not callable"

)

This design lets you pass transformation functions by name without
changing the function signature.

While *args and **kwargs provide flexibility, they can also make your code harder to
understand and maintain:

Type Safety: Type hints become less specific, making it harder to catch type-
related errors
Documentation: It’s harder to document all possible arguments and their types
IDE Support: Code completion and documentation features may not work as well
Debugging: Errors can be harder to track down when arguments are passed
through multiple layers

Use them sparingly and only when:

You need to create wrapper functions that pass through arguments
You’re building flexible APIs that need to handle varying numbers of arguments
You’re implementing decorators or other metaprogramming features

For most cases, explicitly declared parameters are clearer and safer.

 data = transformer_func(data)

 return data

def log_transform(data: np.ndarray) -> np.ndarray:

 return np.log1p(data)

def standardize(data: np.ndarray) -> np.ndarray:

 return (data - data.mean()) / data.std()

raw_data = np.random.rand(100, 5) * 100

transformed_data = transform_pipeline(

 raw_data,

 log_transform=log_transform,

 standardize=standardize,

)

Be Careful with *args and **kwargs

5.4.4 Python Decorators in Data Science

A decorator is a design pattern in Python that allows you to add new
functionality to an existing object without modifying its structure.

Use decorators when you want to extend or modify the behavior of
functions or methods without changing their source code. For
example, you can create a decorator to add timing functionality to a
function:

To apply the decorator to a function, simply place the decorator
above the function definition.

import time

from typing import Callable, List, Union

import numpy as np

def timer_decorator(func: Callable) -> Callable:

 def wrapper(*args, **kwargs):

 start_time = time.time()

 result = func(*args, **kwargs)

 end_time = time.time()

 print(

 f"Function {func.__name__} took "

 f"{end_time - start_time:.2f} seconds to execute."

)

 return result

 return wrapper

@timer_decorator

def train_model(X: np.ndarray, y: np.ndarray | list[float]) ->
None:

 """Simulating a time-consuming model training process"""

 time.sleep(2)

if __name__ == "__main__":

 X = np.random.rand(1000, 10)

Function train_model took 2.01 seconds to execute.

In this example, the timer_decorator wraps the original function, adds
timing functionality, and prints the execution time. When
train_model is called, it automatically includes the timing feature
without modifying the original function’s code.

Notice that when executed, this code replaces train_model function’s
name with “wrapper”. It also substitutes train_model’s docstring and
annotations with wrapper’s empty attributes.

name: wrapper

doc: None

annotations: {}

To maintain essential metadata from the original function when
creating a decorator, use functools.wraps:

 y = np.random.rand(1000)

 train_model(X, y)

print(f"name: {train_model.__name__}")

print(f"doc: {train_model.__doc__}")

print(f"annotations: {train_model.__annotations__}")

from functools import wraps

def timer_decorator(func: Callable) -> Callable:

 @wraps(func)

 def wrapper(*args, **kwargs):

 start_time = time.time()

 result = func(*args, **kwargs)

 end_time = time.time()

 print(

 f"Function {func.__name__} took "

 f"{end_time - start_time:.2f} seconds to execute."

)

 return result

 return wrapper

Let’s apply the decorator to a function and test the timing
functionality.

Function train_model took 2.01 seconds to execute.

name: train_model

doc: Simulating a time-consuming model training process

annotations: {'X': <class 'numpy.ndarray'>,

 'y': numpy.ndarray | list[float],

 'return': None}

We can see that the wrapper function now takes on the identity of the
wrapped function such as name, doc, and annotations.

5.5 Key Takeaways

1. Function design:

Use descriptive, verb-based names in snake_case
Keep functions focused on a single task
Use type hints to improve code clarity and catch errors early
Write clear docstrings for complex functions
Avoid modifying input parameters directly
Use function parameters instead of global variables
Avoid boolean flags as parameters

@timer_decorator

def train_model(X: np.ndarray, y: np.ndarray | list[float]) ->
None:

 """Simulating a time-consuming model training process"""

 time.sleep(2)

if __name__ == "__main__":

 X = np.random.rand(1000, 10)

 y = np.random.rand(1000)

 train_model(X, y)

 print(f"name: {train_model.__name__}")

 print(f"doc: {train_model.__doc__}")

 print(f"annotations: {train_model.__annotations__}")

2. Code organization:

Create reusable utility functions to avoid code duplication
Compose functions to build complex pipelines

3. Advanced features:

Use decorators to add functionality without modifying source
code
Use lambda functions for simple, one-line operations
Use partial functions to create specialized versions of general
functions
Use *args and **kwargs sparingly and only when necessary

6 Python Classes

6.1 What Are Python Classes?

Classes are blueprints for creating objects in Python. They
encapsulate data (attributes) and behavior (methods) that define
what an object can store and do. Unlike functions, which perform
specific tasks on data that is passed to the function, classes contain
data as well as functions that perform operations on that data.

For example, a IceCream class might have attributes like flavor, and
methods like eat(). Each ice cream object created from this class
would have its own values for these attributes but share the same
methods:

class IceCream:

 def __init__(self, flavor: str):

 self.flavor = flavor

 def eat(self):

 print(

 f"Eating the {self.flavor} ice cream"

)

chocolate = IceCream("chocolate")

vanilla = IceCream("vanilla")

chocolate.eat()

vanilla.eat()

Eating the chocolate ice cream

Eating the vanilla ice cream

6.2 Best Practices for Python Classes

6.2.1 Use Descriptive Class Names

Use specific class names to clearly communicate the purpose and
functionality of your code. Follow these naming conventions:

Use PascalCase (capitalize first letter of each word)
Use nouns or noun phrases
Be descriptive but concise
Consider adding a suffix that describes the type (e.g., Manager,
Trainer, Processor)

For example:

Good: DataProcessor, FeatureExtractor, ModelTrainer
Bad: process_data, extract_features, train_model

6.2.2 Hide Implementation Details

Exposing implementation details like helper methods and internal
state as public attributes creates maintenance problems. Users can
directly modify these attributes or call internal methods, breaking
the class’s intended behavior.

For example, the Standardizer class below exposes attributes like
mean, std, and helper methods like calculate_mean() that users
shouldn’t access directly.

import numpy as np

The public attributes and helper methods lead to several issues,
including:

Users must know to call calculate_mean() and calculate_std()
before transform()
Internal attributes like mean and std can be modified directly
Input data can be changed unexpectedly

Unexpected result: [-11.02270384 -9.79795897 -8.5732141]

Instead, hide implementation details by prefixing internal attributes
and methods with a single underscore (_data, _calculate_mean).

class Standardizer:

 def __init__(self, data: np.ndarray) -> None:

 self.data = data

 self.mean = 0

 self.std = 1

 self.is_fitted = False

 def calculate_mean(self) -> None:

 self.mean = np.mean(self.data)

 def calculate_std(self) -> None:

 self.std = np.std(self.data)

 def transform(self) -> np.ndarray:

 return (self.data - self.mean) / self.std

s = Standardizer(np.array([1, 2, 3]))

Users shouldn't need to call these methods

s.calculate_mean()

s.mean = 10

s.calculate_std()

Calling transform() will use the wrong mean and std

result = s.transform()

print(f"Unexpected result: {result}")

The private attribute pattern exposes only the essential transform()
method while protecting internal logic, creating a cleaner API.

Expected result: [-1.22474487 0. 1.22474487]

6.2.3 Use Abstract Base Classes for
Consistent Interfaces

Combine inheritance with abstract base classes for consistent,
extensible interfaces. Inheritance enables child classes to inherit
attributes and methods from parent classes, while abstract base
classes (ABCs) define required blueprints that subclasses must
implement.

In the example below, the MissingValueHandler and DuplicateHandler
classes use inconsistent method names (fill_nulls and
process_dupes) for similar data cleaning operations.

class Standardizer:

 def __init__(self, data: np.ndarray) -> None:

 self._data = data

 def _calculate_mean(self) -> None:

 return np.mean(self._data)

 def _calculate_std(self) -> None:

 return np.std(self._data)

 def transform(self) -> np.ndarray:

 mean_ = self._calculate_mean()

 std = self._calculate_std()

 return (self._data - mean_) / std

s = Standardizer(np.array([1, 2, 3]))

result = s.transform() # Only expose what users need

print(f"Expected result: {result}")

import pandas as pd

This inconsistency forces the clean_dataset function to handle each
class differently through type checking and if-else statements.

If a new data cleaning class is added, the clean_dataset function
needs to be modified to handle it.

class MissingValueHandler:

 def fill_nulls(self, data: pd.DataFrame) -> pd.DataFrame:

 return data.fillna(data.mean())

class DuplicateHandler:

 def process_dupes(self, data: pd.DataFrame) -> pd.DataFrame:

 return data.drop_duplicates()

def clean_dataset(

 data: pd.DataFrame, cleaners: list

) -> pd.DataFrame:

 for cleaner in cleaners:

 if isinstance(cleaner, MissingValueHandler):

 data = cleaner.fill_nulls(data)

 elif isinstance(cleaner, DuplicateHandler):

 data = cleaner.process_dupes(data)

 return data

class OutlierHandler:

 def process_outliers(

 self, data: pd.DataFrame

) -> pd.DataFrame:

 mean = data.mean()

 std = data.std()

 z_scores = (data - mean) / std

 return data[z_scores.abs() <= 3]

def clean_dataset(

 data: pd.DataFrame, cleaners: list

) -> pd.DataFrame:

 for cleaner in cleaners:

 if isinstance(cleaner, MissingValueHandler):

 data = cleaner.fill_nulls(data)

To fix the inconsistent interface problem above, create a
DataTransformer abstract base class that defines the transform method.
Concrete classes like MissingValueHandler inherit from DataTransformer
and implement the required method.

The clean_dataset function processes data by applying a list of
transformers in sequence. This design eliminates type checking
because each transformer follows the DataTransformer interface
contract.

 elif isinstance(cleaner, DuplicateHandler):

 data = cleaner.process_dupes(data)

 # Add new cleaner types here

 elif isinstance(cleaner, OutlierHandler):

 data = cleaner.process_outliers(data)

 return data

from abc import ABC, abstractmethod

import pandas as pd

from typing import List

class DataTransformer(ABC):

 @abstractmethod

 def transform(self, data: pd.DataFrame) -> pd.DataFrame:

 """Transform the input data"""

 pass

class MissingValueHandler(DataTransformer):

 def transform(self, data: pd.DataFrame) -> pd.DataFrame:

 return data.fillna(data.mean())

class DuplicateRemover(DataTransformer):

 def transform(self, data: pd.DataFrame) -> pd.DataFrame:

 return data.drop_duplicates()

def clean_dataset(

 data: pd.DataFrame, transformers: List[DataTransformer]

) -> pd.DataFrame:

6.2.4 Choose Composition Over
Inheritance

While inheritance can be useful for modeling “is-a” relationships and
sharing common functionality, inherited classes can quickly become
complex and difficult to maintain, especially when multiple
inheritance is involved.

Let’s look at an example of using inheritance to create a data
processing pipeline:

 for transformer in transformers:

 data = transformer.transform(data)

 return data

if __name__ == "__main__":

 df = pd.DataFrame({"values": [1, 2, None, 2]})

 transformers = [MissingValueHandler(), DuplicateRemover()]

 clean_df = clean_dataset(df, transformers)

import pandas as pd

from sklearn.preprocessing import StandardScaler

class MissingValueHandler:

 def process(self, df: pd.DataFrame) -> pd.DataFrame:

 print("Handle missing values")

 return df.fillna(0)

class FeatureScaler(MissingValueHandler):

 def process(self, df: pd.DataFrame) -> pd.DataFrame:

 df = super().process(df)

 print("Scale numeric features")

 scaler = StandardScaler().set_output(transform="pandas")

 return scaler.fit_transform(df)

Using NumericDataProcessor triggers a chain of super().process() calls
that processes data through the inheritance hierarchy:

NumericDataProcessor inherits from FeatureScaler
FeatureScaler inherits from MissingValueHandler

Handle missing values

Scale numeric features

Remove duplicates

Result:

 feature1 feature2

0 0.707107 -0.707107

1 -1.414214 1.414214

Problems with this implementation:

The processing steps are locked in a fixed order through the
inheritance chain, making it impossible to reorder without
changing the class hierarchy.
Adding a new step in the middle of the process requires
restructuring the entire inheritance hierarchy.
The code becomes harder to test because each class depends on
its parent’s implementation.

class NumericDataProcessor(FeatureScaler):

 def process(self, df: pd.DataFrame) -> pd.DataFrame:

 df = super().process(df)

 print("Remove duplicates")

 return df.drop_duplicates()

df = pd.DataFrame(

 {

 "feature1": [10.5, np.nan, 10.5],

 "feature2": [100.0, 200.0, 100.0],

 }

)

processor = NumericDataProcessor()

result = processor.process(df)

print("Result:\n", result)

Instead, use composition to create flexible data preprocessing
pipelines that can be easily modified and maintained.

To implement the composition pattern, we can define a DataPipeline
class that takes a list of processing steps and applies them
sequentially to transform the input data.

Define processing functions as pipeline steps. Each function takes
and returns a DataFrame.

import pandas as pd

from sklearn.preprocessing import StandardScaler

import numpy as np

from typing import List

class DataPipeline:

 def __init__(self, steps: List[callable]):

 self.steps = steps

 def process(self, df: pd.DataFrame) -> pd.DataFrame:

 for step in self.steps:

 df = step(df)

 return df

def handle_missing_values(df: pd.DataFrame) -> pd.DataFrame:

 print("Handle missing values")

 return df.fillna(0)

def scale_features(df: pd.DataFrame) -> pd.DataFrame:

 print("Scale numeric features")

 scaler = StandardScaler().set_output(transform="pandas")

 return scaler.fit_transform(df)

def remove_duplicates(df: pd.DataFrame) -> pd.DataFrame:

 print("Remove duplicates")

 return df.drop_duplicates()

Modular functions enable flexible pipeline composition. Create
targeted pipelines for specific needs: missing value handling, feature
scaling, or full preprocessing workflows.

Handle missing values

Remove duplicates

6.3 Advanced Class Toolkit

6.3.1 __str__ and __repr__ Methods

The __str__ and __repr__ special methods control how Python
displays your objects as strings. Use __str__ to create readable output
for end users, and __repr__ to create detailed output for debugging
that shows the object’s exact state.

The example below shows how implementing both methods gives the
ModelMetrics class readable user output and precise debugging
information.

df = pd.DataFrame(

 {

 "feature1": [10.5, np.nan, 10.5],

 "feature2": [100.0, 200.0, 100.0],

 }

)

Pipeline without scaling

pipeline = DataPipeline(

 [handle_missing_values, remove_duplicates]

)

result = pipeline.process(df)

class ModelMetrics:

 def __init__(self, model_name: str):

 self.model_name = model_name

Random Forest Performance

ModelMetrics(model_name='Random Forest')

When rf_metrics is the last line in a Jupyter notebook cell, it
automatically calls __repr__ for each object, providing a complete
representation of the object’s state.

ModelMetrics(model_name='Random Forest')

6.3.2 __eq__ and __add__ Methods

__eq__ and __add__ are special methods that customize equality
comparison and addition operations between objects. Use __eq__ to
define when two objects are considered equal, and __add__ to define
how objects should be combined.

In the ExperimentResults class, __eq__ compares experiments based on
validation loss and hyperparameters, while __add__ averages metrics
to combine experiment results.

 def __str__(self) -> str:

 return f"{self.model_name} Performance"

 def __repr__(self) -> str:

 return f"ModelMetrics(model_name='{self.model_name}')"

rf_metrics = ModelMetrics("Random Forest")

print(rf_metrics)

print(repr(rf_metrics))

rf_metrics

class ExperimentResults:

 def __init__(self, learning_rate, val_loss):

 self.learning_rate = learning_rate

Try out the ExperimentResults class with different experiments:

Comparisons:

exp1 == exp2: True

Average loss: 0.246

LR: 0.001

6.3.3 Data Classes

Dataclasses automatically generate special methods like __init__,
__repr__, and __eq__ for classes that primarily store data, reducing
boilerplate code and improving maintainability.

 self.val_loss = val_loss

 def __eq__(self, other):

 """Check if experiments are similar"""

 return (

 abs(self.val_loss - other.val_loss) < 0.01

 and abs(self.learning_rate - other.learning_rate)

 < 1e-4

)

 def __add__(self, other):

 """Average results of multiple experiment runs"""

 return ExperimentResults(

 (self.learning_rate + other.learning_rate) / 2,

 (self.val_loss + other.val_loss) / 2,

)

exp1 = ExperimentResults(learning_rate=0.001, val_loss=0.245)

exp2 = ExperimentResults(learning_rate=0.001, val_loss=0.248)

print("Comparisons:")

print(f"exp1 == exp2: {exp1 == exp2}")

Average experiments

avg_exp = exp1 + exp2

print(f"\nAverage loss: {avg_exp.val_loss:.3f}")

print(f"LR: {avg_exp.learning_rate}")

Use dataclasses for simple data containers. The ModelMetrics
dataclass below demonstrates automatic method generation and type
enforcement.

ModelMetrics(model_name='Random Forest', accuracy=0.945)

Dataclasses handle mutable default values using default_factory. The
Student class below uses default_factory=list to ensure each instance
gets its own separate grades list, preventing shared mutable state
issues.

Creating two Student instances demonstrates that
student1.grades.append(90) doesn’t affect student2.grades.

from dataclasses import dataclass

@dataclass

class ModelMetrics:

 model_name: str

 accuracy: str

rf_metrics = ModelMetrics("Random Forest", 0.945)

print(rf_metrics)

from dataclasses import dataclass, field

from typing import List

@dataclass

class Student:

 name: str

 grades: List[int] = field(default_factory=list)

student1 = Student("John")

student2 = Student("Jane")

Appending grade to student1

student1.grades.append(90)

Student(name='John', grades=[90])

Student(name='Jane', grades=[])

6.3.4 Pydantic

Pydantic is a data validation library that uses Python type
annotations to enforce data types and validate complex data
structures.

Use Pydantic for data validation, type checking, and ensuring
consistency in data science pipelines where data quality is critical.

The DatasetConfig class below validates that train_split is between 0
and 1, features are strings, and all required fields are present.

print(student1)

doesn't affect the grades of student2

print(student2)

from pydantic import BaseModel, Field, ValidationError

from typing import List

class DatasetConfig(BaseModel):

 dataset_name: str

 features: List[str]

 target_column: str

 train_split: float = Field(gt=0, lt=1)

Using the model in a machine learning pipeline

config = DatasetConfig(

 dataset_name="housing_prices",

 features=["sqft", "bedrooms", "location"],

 target_column="price",

 train_split=0.8,

)

https://github.com/pydantic/pydantic

If any validation fails, Pydantic raises clear error messages, helping
catch configuration issues early in the data science workflow.

ValidationError: 1 validation error for DatasetConfig

train_split

 ensure this value is less than 1 [type=less_than,

 input_value=1.5, input_type=float]

6.3.5 Classmethod in Python

Classmethod is a decorator that defines a method that operates on
the class rather than instances. Use classmethods when you need
alternative constructors or methods that don’t require access to
instance-specific data.

For example, we can create the classmethod from_csv in the Dataset
class to create a new instance from a CSV file.

This will raise a validation error

try:

 invalid_config = DatasetConfig(

 dataset_name="housing_prices",

 features=["sqft", "bedrooms", "location"],

 target_column="price",

 train_split=1.5,

)

except ValidationError as e:

 print("ValidationError:", e)

import pandas as pd

from typing import List

class Dataset:

 def __init__(

 self, data: pd.DataFrame, name: str, features: List[str]

):

 self.data = data

 self.name = name

 self.features = features

The from_csv classmethod lets you create Dataset instances from CSV
files without specifying data, name, and features parameters.

Dataset 'housing' with 3 features and 3 samples

6.3.6 Staticmethod

Staticmethod defines methods independent of class or instance state.
Use staticmethods for utility functions logically related to the class
but requiring no class-specific data.

For example, we can create a static method is_valid_probability in
the ModelEvaluator class to check if predictions are valid probabilities.

 def __str__(self) -> str:

 return (

 f"Dataset '{self.name}' with {len(self.features)} "

 f"features and {len(self.data)} samples"

)

 @classmethod

 def from_csv(cls, filepath: str) -> "Dataset":

 data = pd.read_csv(filepath)

 name = filepath.split("/")[-1].replace(".csv", "")

 features = list(data.columns)

 return cls(data, name, features)

housing_data = Dataset.from_csv("data/housing.csv")

print(housing_data)

import numpy as np

class ModelEvaluator:

 def __init__(self, predictions: np.ndarray, actuals:
np.ndarray):

 self.predictions = predictions

 self.actuals = actuals

You can call the is_valid_probability static method in two ways:

Direct class call:

Valid probabilities: True

Instance method call:

6.3.7 Property Decorator

Property decorator provides a way to customize getter, setter, and
deleter methods for class attributes. Use it when you need to add
validation, computation, or control access to class attributes.

The @property decorator creates a sample_size property in the
DatasetProfile class that:

 @staticmethod

 def is_valid_probability(predictions: np.ndarray) -> bool:

 """Check if predictions are valid probabilities"""

 return all(0 <= p <= 1 for p in predictions)

 def calculate_metrics(self) -> dict:

 """Instance method using static methods"""

 if not self.is_valid_probability(self.predictions):

 raise ValueError("Invalid prediction probabilities")

 squared_errors = (self.predictions - self.actuals) ** 2

 rmse = np.sqrt(np.mean(squared_errors))

 return {"rmse": round(rmse, 3)}

Using static methods directly without instance

predictions = np.array([0.1, 0.8, 0.3])

actuals = np.array([0, 1, 0])

is_valid_probabilities = ModelEvaluator.is_valid_probability(

 predictions

)

print(f"Valid probabilities: {is_valid_probabilities}")

self.is_valid_probability(self.predictions)

Enables clean, attribute-like syntax (profile.sample_size = 2)
while maintaining data integrity
Adds validation rules in the setter to ensure sample sizes are
valid integers within bounds

Let’s try out the DatasetProfile class with a sample dataset:

import pandas as pd

from typing import Optional

class DatasetProfile:

 def __init__(self, data: pd.DataFrame):

 self._data = data

 self._sample_size: Optional[int] = None

 @property

 def sample_size(self) -> Optional[int]:

 """Getter for sample size"""

 return self._sample_size

 @sample_size.setter

 def sample_size(self, value: int) -> None:

 """Setter with validation"""

 if not isinstance(value, int):

 raise TypeError("Sample size must be an integer")

 if value <= 0 or value > len(self._data):

 raise ValueError("Invalid sample size")

 self._sample_size = value

df = pd.DataFrame({"A": [1, 2, None, 4], "B": [5, None, 7, 8]})

profile = DatasetProfile(df)

Using setter with validation

try:

 profile.sample_size = 2

 print(f"Sample size set to: {profile.sample_size}")

 # This will raise an error

 profile.sample_size = -1

Sample size set to: 2

ValueError: Invalid sample size

6.3.8 Slots in Python Classes

The __slots__ attribute defines a fixed set of instance attributes and
reduces memory usage. Apply slots when you want to prevent
dynamic attribute addition and optimize memory consumption.

To demonstrate the benefits of using slots, let’s create two classes:

StandardFeature class without slots
OptimizedFeature class with slots

The OptimizedFeature class below uses slots to block accidental
attribute assignment, preventing bugs and reducing memory
overhead.

except ValueError as e:

 print(f"ValueError: {e}")

from typing import List, Optional

import sys

class StandardFeature:

 def __init__(self, name: str, values: List[float]):

 self.name = name

 self.values = values

class OptimizedFeature:

 __slots__ = ["name", "values"]

 def __init__(self, name: str, values: List[float]):

 self.name = name

 self.values = values

values = [1, 2, 3, 4, 5]

AttributeError: Cannot add new attributes to slotted class

When comparing the memory usage of StandardFeature and
OptimizedFeature, slots reduce memory usage by 8 bytes per instance.

Memory without slots: 56 bytes

Memory with slots: 48 bytes

6.3.9 Scikit-Learn Compatible Class

A scikit-learn compatible class must implement fit and transform (or
predict) methods. Use this pattern when creating custom
transformers or estimators that need to work within scikit-learn’s
ecosystem, particularly in pipelines.

The OutlierCapper class demonstrates scikit-learn compatibility by:

Standard class (without slots)

std_feature = StandardFeature("age", values)

Dynamic attribute creation works

std_feature.new_attr = "allowed"

Optimized class (with slots)

opt_feature = OptimizedFeature("age", values)

Dynamic attribute creation is not allowed

try:

 opt_feature.new_attr = "not allowed"

except AttributeError as e:

 print(

 f"AttributeError: Cannot add new attributes to slotted
class"

)

Memory comparison

print(

 f"Memory without slots: {sys.getsizeof(std_feature)} bytes"

)

print(f"Memory with slots: {sys.getsizeof(opt_feature)} bytes")

Inheriting from BaseEstimator and TransformerMixin
Implementing required fit and transform methods for pipeline
integration

Let’s try out the OutlierCapper class in a scikit-learn pipeline:

Transformed data:

[[-0.72842279 -0.72842279]

from sklearn.base import BaseEstimator, TransformerMixin

from sklearn.pipeline import Pipeline

from sklearn.preprocessing import StandardScaler

import numpy as np

from typing import Optional

class OutlierCapper(BaseEstimator, TransformerMixin):

 def __init__(self, percentile: float = 95):

 self.percentile = percentile

 self.threshold_: Optional[np.ndarray] = None

 def fit(self, X: np.ndarray, y: Optional[np.ndarray] = None):

 self.threshold_ = np.percentile(X, self.percentile, axis=0)

 return self

 def transform(self, X: np.ndarray) -> np.ndarray:

 if self.threshold_ is None:

 raise ValueError("Fit the transformer first")

 return np.minimum(X, self.threshold_)

X = np.array([[1, 10], [2, 20], [100, 1000]])

pipeline = Pipeline(

 [

 ("capper", OutlierCapper(percentile=75)),

 ("scaler", StandardScaler()),

]

)

X_transformed = pipeline.fit_transform(X)

print("Transformed data:\n", X_transformed)

[-0.68557439 -0.68557439]

[1.41399717 1.41399717]]

6.4 Key Takeaways

1. Class design principles:
Use descriptive class names in PascalCase that clearly
communicate purpose
Avoid redundant parameter names that repeat the class
name
Hide implementation details using private attributes (single
underscore prefix)
Keep classes focused on single responsibilities
Expose only necessary methods to users

2. Data transformation patterns:
Use abstract base classes to define standard interfaces for
data transformers
Implement consistent method names across related classes
Use composition to create flexible processing pipelines

3. Inheritance vs Composition:
Use inheritance for “is-a” relationships and sharing
common functionality
Use composition for combining independent behaviors

4. Advanced class features:
Use __str__ for user-friendly output and __repr__ for
unambiguous representation
Implement __eq__ and __add__ for custom equality and
addition operations
Use dataclasses for simple data containers
Use Pydantic for runtime type checking and validation
Use @classmethod for alternative constructors
Use @staticmethod for utility functions
Use @property for controlled attribute access
Use __slots__ for memory optimization

5. Scikit-learn integration:

Inherit from BaseEstimator and TransformerMixin for
compatibility
Implement fit and transform methods

7 Unit Testing

7.1 What Is Unit Testing?

Unit testing is a software testing method where individual
components or units of code are tested to verify that they work as
expected.

Key aspects of unit testing:

1. Isolation: Each test focuses on a single unit of code,
independent of external dependencies

2. Automation: Tests can be run automatically and repeatedly
3. Fast execution: Unit tests should run quickly since they test

small pieces of code
4. Predictable results: Same input should always produce same

output

7.2 Why Is Unit Testing Essential?

7.2.1 Ensure That Your Code Works as
Intended

Automated testing reveals bugs that visual code review cannot detect
reliably. Consider code that appears correct but contains subtle logic
errors that only surface under specific conditions:

At first glance, the output appears to be correct, with 0s and 1s
present in the has_apples and has_oranges columns. However, the
create_booleans() function is actually producing incorrect results:
non-zero values should be converted to 1 and zero values should
remain as 0.

Through observation alone, this bug could go unnoticed, leading to
potentially incorrect downstream analyses or decisions.

Unit tests verify function behavior through systematic automated
testing. The example below tests whether create_booleans() correctly
converts boolean DataFrame values to 0 and 1 format.

num_apples num_oranges has_apples has_orange

0 1 4 0 0

1 2 5 0 0

2 3 0 0 1

3 0 6 1 0

import pandas as pd

df = pd.DataFrame(

 {"num_apples": [1, 2, 3, 0], "num_oranges": [4, 5, 0, 6]}

)

def create_booleans(feature):

 return (feature == 0) * 1

df["has_apples"] = create_booleans(df["num_apples"])

df["has_oranges"] = create_booleans(df["num_oranges"])

df

From the test result, we not only see that the test failed but also the
reason why it failed.

DataFrame.iloc[:, 0] (column name="has_apples") values are

different

[index]: [0, 1, 2, 3]

[left]: [0, 0, 0, 1]

[right]: [1, 1, 1, 0]

7.2.2 Unit Tests Help Identify Edge Cases

Unit tests systematically verify edge cases that normal usage patterns
don’t reveal.

In the following example, the calculate_average function works
correctly for most common input cases but fails when given
unexpected data like an empty list.

import pytest

import pandas as pd

from pandas.testing import assert_frame_equal

def create_booleans(feature):

 return (feature == 0) * 1

def test_create_booleans():

 df = pd.DataFrame(

 {"num_apples": [1, 2, 3, 0], "num_oranges": [4, 5, 0, 6]}

)

 expected_df = pd.DataFrame(

 {"has_apples": [1, 1, 1, 0], "has_oranges": [1, 1, 0, 1]}

)

 df["has_apples"] = create_booleans(df["num_apples"])

 df["has_oranges"] = create_booleans(df["num_oranges"])

 assert_frame_equal(

 df[["has_apples", "has_oranges"]], expected_df

)

 1 # Edge case: List with non-numeric values

----> 2 print(calculate_average([]))

 1 def calculate_average(nums: list) -> float:

----> 2 return sum(nums) / len(nums)

ZeroDivisionError: division by zero

The test_calculate_average_empty_list() function reveals that the
function fails with empty lists, enabling you to add proper error
handling.

.F. [100%]

============================ FAILURES ============================

_______________ test_calculate_average_empty_list ________________

 def test_calculate_average_empty_list():

> assert calculate_average([]) == 0

7.2.3 Enable Safe Replacement of Existing
Code

Unit tests enable safe code refactoring by verifying that changes
don’t break existing functionality. This confidence allows you to

def calculate_average(nums: list) -> float:

 return sum(nums) / len(nums)

print(calculate_average([]))

import pytest

def calculate_average(nums: list) -> float:

 return sum(nums) / len(nums)

def test_calculate_average_positive_numbers():

 assert calculate_average([1, 2, 3, 4, 5]) == 3

def test_calculate_average_empty_list():

 assert calculate_average([]) == 0

improve code without fear of introducing bugs.

For example, you might want to replace the / operator with
np.divide() to improve performance. First, create a test that verifies
calculate_ratio() works correctly with the current implementation.

Now replace calculate_ratio() with the np.divide() version and run
the test. If the test passes, the refactoring preserves the original
functionality.

1 passed in 0.03s

import numpy as np

from pandas.testing import assert_series_equal

def calculate_ratio(

 df: pd.DataFrame, col1: str, col2: str

) -> pd.Series:

 # You want to change from this:

 return df[col1] / df[col2]

 # To this:

 # return np.divide(df[col1], df[col2])

def test_calculate_ratio():

 data = pd.DataFrame({"sales": [100, 200], "cost": [50, 100]})

 expected = pd.Series([2.0, 2.0])

 output = calculate_ratio(data, "sales", "cost")

 assert_series_equal(output, expected)

Can safely replace with vectorized version

def calculate_ratio(

 df: pd.DataFrame, col1: str, col2: str

) -> pd.Series:

 return np.divide(df[col1], df[col2])

def test_calculate_ratio():

 data = pd.DataFrame({"sales": [100, 200], "cost": [50, 100]})

 expected = pd.Series([2.0, 2.0])

 output = calculate_ratio(data, "sales", "cost")

 assert_series_equal(output, expected)

7.2.4 Provide Documentation Through
Tests

Unit tests serve as living documentation that shows exactly how
functions should be used. Unlike comments that can become
outdated, tests demonstrate actual usage patterns and expected
behavior through working examples.

For example, consider a function that calculates the distance
between two points in 3D space. Without looking at the
implementation, it might not be immediately clear what coordinate
system this function uses or whether it handles negative coordinates.

Reading the test cases for calculate_distance() reveals key aspects of
the function’s behavior:

1. It takes six float arguments representing the x, y, and z
coordinates of two 3D points.

2. It calculates the Euclidean distance between the two points and
returns the result as a float.

3. It can handle positive, negative, and zero coordinate values.
4. It expects the input arguments to be of the correct data type

(float), and will raise a TypeError if given invalid inputs.

import math

def calculate_distance(

 x1: float, y1: float, z1: float, x2: float, y2: float, z2:
float

) -> float:

 return math.sqrt(

 (x1 - x2) ** 2 + (y1 - y2) ** 2 + (z1 - z2) ** 2

)

import pytest

7.3 Use Pytest for Unit Testing

When it comes to testing frameworks in Python, pytest stands out as
a user-friendly choice. It simplifies the process of writing concise
tests, making it an excellent tool for developers new to testing.

To install pytest, execute the following command:

7.3.1 Get Started

Let’s consider an example where we want to test the
extract_sentiment function. In pytest, test functions should start with
the prefix test_. Here’s an example implementation:

Example 7.1: test_sentiment.py

def test_calculate_distance_positive_coordinates():

 assert calculate_distance(1, 2, 3, 4, 5, 6) == pytest.approx(

 5.19, abs=1e-2

)

def test_calculate_distance_negative_coordinates():

 assert calculate_distance(

 -1, -2, -3, -4, -5, -6

) == pytest.approx(5.19, abs=1e-2)

def test_calculate_distance_zero_coordinates():

 assert calculate_distance(0, 0, 0, 0, 0, 0) == 0.0

def test_calculate_distance_invalid_inputs():

 with pytest.raises(TypeError):

 calculate_distance("1", 2, 3, 4, 5, 6)

pip install pytest

https://docs.pytest.org/

With the test function in place, we can run the test using the
following command:

pytest automatically detects and runs all Python files beginning with
test and functions prefixed with test in the current working
directory. After running the test, the output will resemble the
following:

test_sentiment.py . [100%]

======================= 1 passed in 0.68s =======================

When tests fail, pytest displays the exact test that failed and the
expected versus actual values.

========================== FAILURES ===============================

___________________ test_extract_sentiment ________________________

 def test_extract_sentiment():

 text = "I think today will be a great day"

 sentiment = extract_sentiment(text)

from textblob import TextBlob

def extract_sentiment(text: str):

 '''Extract sentiment using textblob.

 Polarity is within range [-1, 1]'''

 text = TextBlob(text)

 return text.sentiment.polarity

def test_extract_sentiment():

 text = "I think today will be a great day"

 sentiment = extract_sentiment(text)

 assert sentiment > 0

pytest test_sentiment.py

def test_extract_sentiment():

 text = "I think today will be a great day"

 sentiment = extract_sentiment(text)

 assert sentiment < 0

> assert sentiment < 0

E assert 0.8 < 0

7.3.2 Multiple Tests for the Same
Function

pytest allows us to create multiple tests for the same function,
enabling comprehensive testing scenarios.

Figure 7.1 illustrates this concept, where two separate tests (Test 1
and Test 2) are used to thoroughly validate the behavior of a single
function.

Figure 7.1: Multiple tests for a single function

Here’s an example of how to write multiple tests for the same
function:

def test_extract_sentiment_positive():

 text = "I think today will be a great day"

 sentiment = extract_sentiment(text)

 assert sentiment > 0

def test_extract_sentiment_negative():

 text = "I do not think this will turn out well"

 sentiment = extract_sentiment(text)

 assert sentiment < 0

The test summary shows that the test_extract_sentiment_negative
test failed while the test_extract_sentiment_positive test passed.

==================== short test summary info ====================

FAILED sentiment.py::test_extract_sentiment_negative - assert 0.0 <

0

================== 1 failed, 1 passed in 0.78s ==================

7.3.3 Parametrization: Combining Tests

When multiple test functions test the same functionality, combine
them into a single test function with parameterization using
pytest.mark.parametrize().

Figure 7.2 illustrates this approach, where a single test function
utilizes different parameters (Param 1 and Param 2) to test the same
function.

Figure 7.2: Parameterized test for a single function

Let’s explore two approaches to parametrizing tests:

Using a list of input samples to test the same condition
Using pairs of inputs and expected outputs to verify specific
results

7.3.3.1 Parametrize With a List of Samples

The @pytest.mark.parametrize decorator enables testing multiple
inputs with identical logic.

In the example below, it automatically executes
test_extract_sentiment for each string in testdata, validating positive
sentiment across all samples.

The results show that the positive sentiment test passed but the
negative sentiment test failed:

=========================== FAILURES ===========================

sample = 'I do not think this will turn out well'

 @pytest.mark.parametrize('sample', testdata)

 def test_extract_sentiment(sample):

 sentiment = extract_sentiment(sample)

> assert sentiment > 0

E assert 0.0 > 0

sentiment.py:19: AssertionError

from textblob import TextBlob

import pytest

def extract_sentiment(text: str):

 text = TextBlob(text)

 return text.sentiment.polarity

testdata = [

 "I think today will be a great day",

 "I do not think this will turn out well",

]

@pytest.mark.parametrize("sample", testdata)

def test_extract_sentiment(sample):

 sentiment = extract_sentiment(sample)

 assert sentiment > 0

==================== short test summary info =====================

================== 1 failed, 1 passed in 0.80s ===================

7.3.3.2 Parametrize With a List of Examples and
Expected Outputs

Apply pytest.mark.parametrize with a list of tuples to test a function
against multiple input-output combinations.

The test shows that both tests passed.

test_sentence_contain_word[There is a duck-True] PASSED

test_sentence_contain_word[There is nothing here-False] PASSED

====================== 2 passed in 0.04s ======================

7.3.4 Test One Function at a Time

Testing one function at a time improves test execution times,
enabling faster feedback loops during development.

By default, running pytest test_file.py executes all the tests in that
file. However, if you want to test a specific function, you can run

import pytest

def sentence_contain_word(word: str, sentence: str):

 return word in sentence

testdata = [

 ("There is a duck", True), ("There is nothing here", False)

]

@pytest.mark.parametrize("sample, expected_output", testdata)

def test_sentence_contain_word(sample, expected_output):

 word = "duck"

 assert sentence_contain_word(word, sample) == expected_output

pytest test_file.py::test_function_name.

Figure 7.3 illustrates this concept, where running the pytest
command with the specific test function name results in only that
test being executed, while the other tests in the file are skipped.

Figure 7.3: Selectively running a single test

Let’s consider a file called sentiment_two_tests.py that contains two
test functions:

Example 7.2: sentiment_two_tests.py

from textblob import TextBlob

def extract_sentiment(text: str):

 text = TextBlob(text)

 return text.sentiment.polarity

def test_extract_sentiment_positive():

 text = "I think today will be a great day"

 sentiment = extract_sentiment(text)

 assert sentiment > 0

def test_extract_sentiment_negative():

 text = "I do not think this will turn out well"

To run only test_sentence_contain_word, type:

sentiment_two_tests.py::test_extract_sentiment_positive PASSED

======================== 1 passed in 0.73s ========================

7.3.5 Fixtures: Use the Same Data to Test
Different Functions

pytest fixtures allow you to use the same data across multiple test
functions, ensuring consistency and reducing duplication.

Figure 7.4 illustrates this concept, where a common data source
(Data) is used by multiple test functions (Test 1 and Test 2) to
validate the behavior of a single function.

Figure 7.4: Reusing test data with fixtures

The following example demonstrates how to use a fixture to share
test data across multiple functions. The example_data fixture:

Returns the sentence “Today I found a duck and I am happy”
Supplies input data to two different test functions

 sentiment = extract_sentiment(text)

 assert sentiment < 0

pytest sentiment_two_tests.py::test_extract_sentiment_positive

..

[100%]

2 passed in 0.01s

7.4 Best Practices for Unit Testing

7.4.1 Use Descriptive Test Names in Unit
Tests

Use descriptive test names that clearly communicate the test’s
purpose and expected behavior.

In the example below, generic names like test_sentiment_1 fail to
describe what’s being tested, making error messages unclear.

@pytest.fixture

def example_data():

 return 'Today I found a duck and I am happy'

def test_extract_sentiment(example_data):

 sentiment = extract_sentiment(example_data)

 assert sentiment > 0

def test_sentence_contain_word(example_data):

 word = 'duck'

 assert sentence_contain_word(word, example_data) == True

from textblob import TextBlob

def extract_sentiment(text: str):

 """Extract sentiment using textblob.

 Polarity is within range [-1, 1]"""

 text = TextBlob(text)

 return text.sentiment.polarity

def test_sentiment_1():

 text = "I think today will be a great day"

 sentiment = extract_sentiment(text)

Instead, use descriptive test names to clearly communicate the test’s
purpose, expected behavior, and conditions being tested.

7.4.2 Use Logical Test Directory Structure

Use a clear directory structure and naming conventions to make your
tests organized, discoverable, and maintainable.

The following directory structure shows a common approach where
each test_*.py file in the tests/ directory corresponds to a .py file in
the src/ directory:

 assert sentiment > 0

def test_sentiment_2():

 text = "I am very sad today"

 sentiment = extract_sentiment(text)

 assert sentiment < 0

def test_sentiment_3():

 text = "The weather is neither good nor bad"

 sentiment = extract_sentiment(text)

 assert -0.1 < sentiment < 0.1

def test_extract_sentiment_positive():

 text = "I think today will be a great day"

 sentiment = extract_sentiment(text)

 assert sentiment > 0

def test_extract_sentiment_negative():

 text = "I am very sad today"

 sentiment = extract_sentiment(text)

 assert sentiment < 0

def test_extract_sentiment_neutral():

 text = "The weather is neither good nor bad"

 sentiment = extract_sentiment(text)

 assert -0.1 < sentiment < 0.1

project/

│

├── src/

│ ├── __init__.py

│ ├── data_processor.py

│ └── model.py

└── tests/

 ├── __init__.py

 ├── conftest.py # Shared fixtures

 ├── test_data_processor.py

 └── test_model.py

The conftest.py file contains shared fixtures that can be used by all
tests.

Example 7.3: tests/conftest.py

7.4.3 Test One Thing at a Time

Write separate tests for each function behavior to:

Provide clear failure messages that identify exactly which
behavior failed
Ensure all test cases execute independently

The example below shows a test with multiple assertions. When the
test fails, developers must manually investigate which assertion
broke and what input caused the failure.

import pytest

import pandas as pd

@pytest.fixture

def sample_df():

 return pd.DataFrame({"feature": [1, 2, 3], "target": [0, 1,
0]})

def test_sentiment_analysis_multiple_cases():

 # Test positive sentiment

F

[100%]

============================= FAILURES

=============================

______________ test_sentiment_analysis_multiple_cases

 def test_sentiment_analysis_multiple_cases():

 # Test positive sentiment

 text1 = "I am very happy today!"

 sentiment1 = extract_sentiment(text1)

> assert sentiment1 == 0

E assert 1.0 == 0

Instead, write focused tests that verify one specific behavior. Each
test should make a single assertion with a descriptive name that
explains the expected outcome.

 text1 = "I am very happy today!"

 sentiment1 = extract_sentiment(text1)

 assert sentiment1 == 0

 # Test negative sentiment

 text2 = "I am very sad today"

 sentiment2 = extract_sentiment(text2)

 assert sentiment2 < 0

 # Test empty string handling

 text3 = ""

 sentiment3 = extract_sentiment(text3)

 assert sentiment3 == 0

def test_positive_text_returns_positive():

 text = "I am very happy today!"

 sentiment = extract_sentiment(text)

 assert sentiment == 0

def test_negative_text_returns_negative():

 text = "I am very sad today"

 sentiment = extract_sentiment(text)

 assert sentiment < 0

def test_empty_text_returns_zero():

By splitting the test into three separate tests, we can immediately see
that the test_positive_text_returns_positive test failed.

 def test_positive_text_returns_positive():

 text = "I am very happy today!"

 sentiment = extract_sentiment(text)

> assert sentiment == 0

E assert 1.0 == 0

7.4.4 Test Both Expected And Unexpected
Cases

Test both normal operations and edge cases to ensure your code
handles all scenarios robustly. Here’s an example of tests for the
extract_sentiment() function.

Test basic functionality:

Test boundary conditions:

 text = ""

 sentiment = extract_sentiment(text)

 assert sentiment == 0

class TestBasicSentiment:

 def test_positive_sentiment(self):

 text = "I am happy today"

 sentiment = extract_sentiment(text)

 assert sentiment > 0

 def test_negative_sentiment(self):

 text = "I am sad today"

 sentiment = extract_sentiment(text)

 assert sentiment < 0

 def test_neutral_sentiment(self):

 text = "The sky is blue"

 sentiment = extract_sentiment(text)

 assert -0.1 <= sentiment <= 0.1

Test text formatting:

Test invalid inputs:

class TestBoundaryConditions:

 def test_empty_string(self):

 text = ""

 sentiment = extract_sentiment(text)

 assert sentiment == 0

 def test_single_character(self):

 text = "."

 sentiment = extract_sentiment(text)

 assert isinstance(sentiment, float)

 def test_very_long_text(self):

 text = "I am happy " * 1000

 sentiment = extract_sentiment(text)

 assert isinstance(sentiment, float)

 assert sentiment > 0

class TestTextFormatting:

 def test_multiple_whitespace(self):

 text = " I am happy "

 sentiment = extract_sentiment(text)

 assert sentiment > 0

 def test_newlines_and_tabs(self):

 text = "I am\nhappy\ttoday"

 sentiment = extract_sentiment(text)

 assert sentiment > 0

 def test_special_characters(self):

 text = "I am happy! 😊 #blessed"

 sentiment = extract_sentiment(text)

 assert sentiment > 0

class TestInvalidInputs:

 @pytest.mark.parametrize(

 "invalid_input", [None, 123, ["text"], {"text": "happy"}]

)

 def test_invalid_input_types(self, invalid_input):

7.4.5 Centralize Test Data Preparation

Extract common test data creation into reusable fixtures to improve
maintainability and reduce repetitive setup code.

In the following example, we repeat creating the same DataFrame in
each test, creating unnecessary code duplication.

 with pytest.raises(TypeError):

 extract_sentiment(invalid_input)

import pandas as pd

def analyze_sales(df: pd.DataFrame) -> dict:

 return {

 "total": df["amount"].sum(), "avg": df["amount"].mean()

 }

def test_total_sales():

 df = pd.DataFrame(

 {

 "amount": [100, 200, 300],

 "date": ["2023-01-01", "2023-01-02", "2023-01-03"],

 }

)

 result = analyze_sales(df)

 assert result["total"] == 600

def test_average_sales():

 df = pd.DataFrame(

 {

 "amount": [100, 200, 300],

 "date": ["2023-01-01", "2023-01-02", "2023-01-03"],

 }

)

 result = analyze_sales(df)

 assert result["avg"] == 200

We can simplify the data setup by using a pytest fixture to define a
single test data source:

Alternatively, use a setup method to set up the data once and reuse it
in each test:

@pytest.fixture

def sample_df():

 return pd.DataFrame(

 {

 "amount": [100, 200, 300],

 "date": ["2023-01-01", "2023-01-02", "2023-01-03"],

 }

)

def test_total_sales(sample_df):

 result = analyze_sales(sample_df)

 assert result["total"] == 600

def test_average_sales(sample_df):

 result = analyze_sales(sample_df)

 assert result["avg"] == 200

class TestSalesAnalysis:

 def setup_method(self):

 self.df = pd.DataFrame(

 {

 "amount": [100, 200, 300],

 "date": ["2023-01-01", "2023-01-02", "2023-01-03"],

 }

)

 def test_total_sales(self):

 result = analyze_sales(self.df)

 assert result["total"] == 600

 def test_average_sales(self):

 result = analyze_sales(self.df)

 assert result["avg"] == 200

By using a single test data source, you make your tests more
consistent, easier to update, and cleaner to read.

7.4.6 Use Synthetic Test Data

Generate test data within your tests rather than depending on
external files for better reliability and control. This approach
eliminates file dependency issues and simplifies edge case testing.

The example below shows a test that depends on data.csv. When the
file changes or goes missing, the test will break.

Instead, create a DataFrame with specific age values to test
drop_outliers. This synthetic data provides reliable, predictable test
conditions.

7.4.7 Use Mocking in Unit Tests

Mock external dependencies like database connections to create
isolated, reliable tests. Mocking replaces real external services with

def drop_outliers(df: pd.DataFrame, col: str, threshold: float):

 df = df[df[col] < threshold]

 return df

def test_drop_outliers():

 data = pd.read_csv("data/sample.csv") # can change or go
missing

 result = drop_outliers(data, "age", 100)

 assert (result["age"] < 100).all()

def test_drop_outliers():

 # Using synthetic data with known values

 data = pd.DataFrame({"age": [10, 50, 90, 110, 20]})

 result = drop_outliers(data, "age", 100)

 assert list(result["age"]) == [10, 50, 90, 20]

fake objects that simulate their behavior without actual network calls
or database queries.

The example below shows a test that depends on a real database
connection, which creates several issues:

It requires a live database connection, making tests slow to run
Results can be inconsistent between test runs due to changing
database state
Tests may fail if database is unavailable or credentials expire

Instead of using a live database, mock the pd.read_sql function to
return controlled test data. Key components include:

@patch specifies which function to mock (pandas.read_sql)
Mock objects are injected automatically as test function
arguments (mock_read_sql)
return_value controls what the mock returns when called
assert_called_once() verifies the mock was called exactly once

import pandas as pd

def get_active_users() -> pd.DataFrame:

 # Direct database dependency

 df = pd.read_sql(

 "SELECT user_id FROM users WHERE status = 'active'",

 "postgresql://user:pass@localhost:5432/prod"

)

 return df.head(10)

def test_get_active_users():

 # Test requires actual database

 result = get_active_users()

 assert len(result) <= 10

 assert 'user_id' in result.columns

@patch("pandas.read_sql")

def test_get_active_users(mock_read_sql):

 # Step 1: Set up the mock response

 mock_df = pd.DataFrame({"user_id": [1, 2, 3]})

You can also use side_effect to simulate database connection failures
in the mocked pd.read_sql function.

7.4.8 Use Simple Test Examples

Using simple, focused tests makes the expected outcomes clear and
enables faster test execution.

The test below is overly complex, including unnecessary data fields
like timestamp, category, and metadata. Its detailed assertions and
complex test data make it difficult to understand the expected
behavior.

 # Tell the mock what to return when called

 mock_read_sql.return_value = mock_df

 # Step 2: Call the function under test

 result = get_active_users()

 # Step 3: Check the results

 assert len(result) == 3

 assert list(result.columns) == ["user_id"]

 # Step 4: Verify the mock was called correctly

 mock_read_sql.assert_called_once()

@patch("pandas.read_sql")

def test_get_active_users_error(mock_read_sql):

 # Make the mock raise an error

 mock_read_sql.side_effect = ConnectionError("DB Error")

 # Test error handling

 try:

 result = get_active_users()

 except ConnectionError as e:

 assert str(e) == "DB Error"

import pandas as pd

import numpy as np

Create simple, focused tests with clear intentions instead. The
following test eliminates unnecessary complexity by using basic data
and simple assertions:

def calculate_metrics(df: pd.DataFrame, col: str) -> dict:

 return {"mean": df[col].mean(), "std": df[col].std()}

def test_calculate_metrics():

 # Complex test data with unnecessary values

 data = pd.DataFrame(

 {

 "value": [

 10.5, 20.3, 15.7, 18.9, 22.1,

 19.5, 17.8, 16.4, 21.2, 23.4,

 12.3, 14.7, 19.8, 22.5, 16.9

],

 "timestamp": pd.date_range("2023-01-01", periods=15),

 "category": ["A", "B", "C"] * 5,

 "metadata": [f"info_{i}" for i in range(15)],

 }

)

 result = calculate_metrics(data, "value")

 # Overly precise assertions

 assert round(result["mean"], 3) == 18.133

 assert round(result["std"], 3) == 3.747

def test_calculate_metrics():

 # Simple test data with round numbers

 data = pd.DataFrame({"value": [10, 20, 30]})

 result = calculate_metrics(data, "value")

 assert result["mean"] == 20

 assert result["std"] == 10

7.5 Key Takeaways

1. Benefits of unit testing:
Verifies code works as intended
Identifies edge cases
Enables safe code refactoring
Serves as living documentation
Improves code quality and maintainability

2. Pytest best practices:
Use descriptive test names that explain the test’s purpose
Test one function at a time for faster feedback
Use fixtures to share test data between tests
Use parametrization to test multiple scenarios
Follow a logical test directory structure

3. Writing effective tests:
Test both normal cases and edge cases
Keep tests simple and focused
Keep tests independent and isolated using synthetic data or
mocking

8 Configuration Management

8.1 What Is Configuration Management?

Configuration management involves organizing and controlling
application settings, parameters, and environment variables in a
structured way. For example, in a data science project, you might
need to manage:

Data paths and sources (e.g., CSV files, databases, S3 buckets)
Model hyperparameters (e.g., learning rate, number of epochs,
batch size)
Feature engineering settings (e.g., columns to drop, scaling
parameters)
Training configurations (e.g., train/test split ratio, random seed)
Environment-specific settings (e.g., development vs production
databases)

8.2 Why Is Configuration Management
Essential?

8.2.1 Cleaner Codebase

Separating configuration from code helps keep your codebase
cleaner and more organized.

The following code mixes core logic with hard-coded values like file
paths, test size, and random state, making it difficult to understand
the core logic.

To keep the codebase focused on the logic, store the configuration in
a separate YAML file.

main.yaml

Then, load the configuration in the Python script using the yaml
library.

Example 8.1: main.py

import pandas as pd

import numpy as np

from sklearn.model_selection import train_test_split

from sklearn.svm import SVC

from sklearn.model_selection import GridSearchCV

import joblib

data = pd.read_csv("data/raw/winequality-red.csv")

data = data.drop(columns=["free sulfur dioxide"])

X = data.drop(columns="quality")

y = data["quality"]

data_path:

 raw: data/raw/winequality-red.csv

 intermediate: data/intermediate

model_path: models/model.pkl

columns:

 to_drop:

 - free sulfur dioxide

 target: quality

import yaml

8.2.2 Flexible Experimentation

Configuration files enable you to experiment with different
parameters, such as hyperparameters, without modifying the core
code.

You can create separate config files for each experiment and switch
between them to test different approaches .

Experiment 1:

Example 8.2: config/svm_experiment.yaml

Experiment 2:

Example 8.3: config/random_forest_experiment.yaml

Load config

with open("main.yaml", "r") as f:

 config = yaml.safe_load(f)

data = pd.read_csv(config["data_path"]["raw"])

data = data.drop(columns=config["columns"]["to_drop"])

X = data.drop(columns=config["columns"]["target"])

y = data[config["columns"]["target"]]

split:

 test_size: 0.2

 random_state: 42

train:

 model: SVM

 hyperparameters:

 kernel: rbf

 C: 1.0

 gamma: 0.001

Example 8.4: config/random_forest_experiment.yaml (Continued)

8.2.3 Environment-Specific
Configurations

In data science projects, you often need different configurations for
development, staging, and production environments. For example:

Development: Using local CSV files and small datasets for rapid
iteration
Staging: Testing with cloud storage (e.g., S3) and medium-sized
datasets
Production: Running on cloud infrastructure with full datasets
and strict security

Configuration files let you seamlessly switch between these
environments by changing a single environment variable, without
modifying any code. This separation of configuration from code is
crucial for maintaining a reliable deployment pipeline.

For example, you can create separate configuration files for each
environment.

Development:

Example 8.5: config/development.yaml

split:

 test_size: 0.2

 random_state: 42

train:

 model: RandomForest

 hyperparameters:

 n_estimators: 200

 max_depth: 15

 min_samples_split: 5

Staging:

Example 8.6: config/staging.yaml

Production:

Example 8.7: config/production.yaml

Then, load the appropriate configuration file based on the
environment variable.

Example 8.8: main.py

Using development environment

Data source: csv

data_source: csv

file_path: data/raw/winequality-red.csv

logging_level: DEBUG

data_source: s3

bucket: staging-ml-bucket

file_path: datasets/winequality-red.csv

logging_level: INFO

data_source: s3

bucket: production-ml-bucket

file_path: datasets/winequality-red.csv

logging_level: WARNING

import yaml

import os

Load environment-specific config

env = os.getenv("ENVIRONMENT", "development")

with open(f"config/{env}.yaml", "r") as file:

 config = yaml.safe_load(file)

print(f"Using {env} environment")

print(f"Data source: {config['data_source']}")

8.3 Use Hydra to Manage Configurations

8.3.1 Introduction to Hydra

Hydra is a powerful framework that simplifies the configuration and
management of complex applications.

It helps you keep your code clean, flexible, and scalable by
supporting:

Intuitive access to parameters via dot notation
Quick overrides from the command line for fast iteration
Logical grouping of configs to manage complexity
Multi-run execution to automate combinations of configurations

Let’s dig deeper into each of these features.

8.3.2 Convenient Parameter Access

Hydra enables convenient parameter access through dot notation by
decorating your main function with the @hydra.main decorator.

Suppose all configuration files are stored under the conf folder and
all Python scripts are stored under the src folder.

.

├── conf/

│ └── main.yaml

└── src/

 └── process.py

Configuration file:

conf/main.yaml

https://hydra.cc/

Use the @hydra.main decorator to tell Hydra where to find and apply
the configuration. The config parameter is a DictConfig object that
supports both dot notation (config.key) and dictionary-style access
(config['key']).

Example 8.9: src/process.py

['free sulfur dioxide']

['free sulfur dioxide']

8.3.3 Command-Line Help Feature

Hydra’s help menu allows you to easily explore your script’s
configuration options without needing to review code or
configuration files.

To access the help menu, simply run your script with the --help flag.

process:

cols_to_drop:

- free sulfur dioxide

feature: quality

test_size: 0.2

import hydra

from omegaconf import DictConfig

@hydra.main(

 config_path="../conf", config_name="main", version_base=None

)

def process_data(config: DictConfig):

 # You can use a bracket notation

 print(config["process"]["cols_to_drop"])

 # or use a dot notation

 print(config.process.cols_to_drop)

if __name__ == "__main__":

 process_data()

process is powered by Hydra.

== Config ==

Override anything in the config (foo.bar=value)

process:

 cols_to_drop:

 - free sulfur dioxide

 feature: quality

 test_size: 0.2

8.3.4 Command-Line Configuration
Override

Command-line configuration overrides let you test different
parameters without modifying configuration files.

For example, when experimenting with different test_size values,
editing the configuration file repeatedly is time-consuming. Instead,
use Hydra’s command-line syntax to override values directly:

8.3.5 Multi-run

Hydra’s multirun feature allows simultaneous execution with
different configurations, eliminating the need to run experiments
sequentially.

For example, instead of running experiments with different test_size
values of 0.2 and 0.3 sequentially, use multirun to execute them
simultaneously:

python src/process.py --help

python src/process.py process.test_size=0.3

python src/process.py --multirun process.test_size=0.2,0.3

8.3.6 Interpolation

Hydra’s interpolation feature lets you reference config values using
${...} syntax. This helps reduce duplicates and makes updates
easier.

The following configuration file repeats
data/customer_segmentation/v1 in multiple paths.

conf/main.yaml

With interpolation, you can simplify the file by:

Setting base to reference project.name and project.version
Setting other paths to reference base

conf/main.yaml

8.3.7 Grouping config files

project:

 name: customer_segmentation

 version: v1

paths:

 base: data/customer_segmentation/v1

 raw: data/customer_segmentation/v1/raw

 processed: data/customer_segmentation/v1/processed

 reports: data/customer_segmentation/v1/reports

project:

 name: customer_segmentation

 version: v1

paths:

 base: data/${project.name}/${project.version}

 raw: ${paths.base}/raw

 processed: ${paths.base}/processed

 reports: ${paths.base}/reports

Hydra supports organizing related configurations into logical groups,
making it easier to switch between variations of preprocessing steps,
models, or training strategies.

Here’s how to set up and use a config group for processing options:

Update your project structure to organize different processing
strategies under a process/ config group.

Create a configuration file for each processing strategy.

conf/process/drop_missing.yaml

conf/process/impute.yaml

Update the main.yaml file to reference the process group.

conf/main.yaml

.

└── conf/

 ├── main.yaml

 └── process/

 ├── drop_missing.yaml

 └── impute.yaml

strategy: drop_missing

cols_to_drop: ["id", "timestamp", "customer_id"]

impute_strategy: null

feature: quality

test_size: 0.2

strategy: impute

cols_to_drop: []

impute_strategy: mean

feature: quality

test_size: 0.2

defaults:

 - process: drop_missing

 - _self_

To switch between groups, simply use command-line overrides.

Apply the same grouping approach to training strategies. Update
main.yaml to reference the train group.

Updated directory structure:

conf/

├── main.yaml

├── process/

│ ├── drop_missing.yaml

│ └── impute.yaml

└── train/

 ├── basic.yaml

 └── advanced.yaml

Updated main.yaml file:

conf/main.yaml

Mix and match configurations with a single command:

8.4 Best Practices for Configuration
Management

data:

 raw: data/raw/winequality-red.csv

 intermediate: data/intermediate

python src/process.py process=impute

defaults:

 - process: drop_missing

 - train: basic

 - _self_

python src/process.py process=impute train=advanced

8.4.1 Use Meaningful YAML
Configuration Structure

Use hierarchical structure in YAML configuration files to organize
data science project settings logically and make them easier to
maintain:

Developers can quickly find relevant sections without scanning
the entire file
Adding new parameters is straightforward, reducing errors and
clutter

Here is an example of a well-structured YAML configuration file:

8.4.2 Never Include Sensitive Data in
Code or Config Files

Never include sensitive data like API keys, passwords, or access
tokens in code or configuration files. These files are tracked in
version control so anyone with repository access can view past
commits and obtain the sensitive data.

paths:

 data:

 raw: data/raw/winequality-red.csv

 intermediate: data/intermediate

 model: models/model.pkl

preprocessing:

 columns_to_drop:

 - free sulfur dioxide

 target: quality

 split:

 test_size: 0.2

 random_state: 42

Instead, store only non-sensitive configuration in config files and put
sensitive data in .env files.

Config file:

main.yaml

Environment file:

.env

Add the .env file to .gitignore to prevent commits:

To load the sensitive information from the .env file, use the python-
dotenv library:

api:

 key: sk_live_12345abcdef

 url: https://api.alphavantage.co/query

api:

 url: https://api.alphavantage.co/query

ALPHA_VANTAGE_KEY=sk_live_12345abcdef

.gitignore

.env

import os

from dotenv import load_dotenv

import yaml

import pandas as pd

Load environment variables

load_dotenv(".env")

Get API key from environment

api_key = os.getenv("ALPHA_VANTAGE_KEY")

if not api_key:

 raise ValueError("API key not found in environment variables")

https://github.com/theskumar/python-dotenv

8.5 Key Takeaways

1. Benefits of configuration management:
Separate configuration from code for better maintainability
Keep code clean and focused on core logic
Enable flexible experimentation with different parameters

2. Hydra framework benefits:
Provides intuitive parameter access via dot notation
Enables quick configuration overrides from the command
line
Supports logical grouping of related configurations
Allows multi-run execution for testing multiple
configurations
Offers interpolation to reduce configuration duplication

3. Best practices:
Use a hierarchical structure in configuration files
Never include sensitive data in code or configuration files

9 Logging and Exception
Handling

9.1 What Is Logging?

If you’re familiar with using print() statements to track what’s
happening in your code, logging is like print() but with superpowers.

Think of logging as a more sophisticated way to monitor your code’s
execution, especially useful when your data science projects grow
beyond simple notebooks.

9.2 Why Should You Use Logging Instead
of Print?

As your data science projects evolve from notebooks to production-
ready pipelines, print() becomes harder to manage. Logging offers
structured execution tracking that scales with your codebase.

For example, consider the following data science project where you
want to track different stages like data loading, preprocessing, model
training, and error handling:

print("Loaded 1000 rows")

print("Training RandomForest model")

Loaded 1000 rows

Training RandomForest model

Missing values detected

Model training failed

This works fine locally, but in a production environment:

There’s no record of when these events occurred.
There’s no way to save that record to a file for later inspection.
There’s no indication of the severity of each message, making it
hard to distinguish between general informational messages and
serious runtime errors.

Unlike print, the logging module supports log levels, output
formatting, and saving to a file. Here’s an example:

Example 9.1: train.py

2025-06-04 13:24:03 | DEBUG | train:main:11 - Loaded 1000 rows

2025-06-04 13:24:03 | INFO | train:main:12 - Training RandomForest

model

print("Missing values detected")

print("Model training failed")

import logging

logging.basicConfig(

 level=logging.DEBUG,

 format="%(asctime)s | %(levelname)s | "

 "%(module)s:%(funcName)s:%(lineno)d - %(message)s",

 datefmt="%Y-%m-%d %H:%M:%S",

)

def main():

 logging.debug("Loaded 1000 rows")

 logging.info("Training RandomForest model")

 logging.warning("Missing values detected")

 logging.error("Model training failed")

if __name__ == "__main__":

 main()

2025-06-04 13:24:03 | WARNING | train:main:13 - Missing values

detected

2025-06-04 13:24:03 | ERROR | train:main:14 - Model training failed

In this output, we can see the following:

The timestamp of the event (2025-06-04 13:24:03)
The log level (DEBUG, INFO, WARNING, ERROR)
The module and function name (train:main)
The line number (11, 12, 13, 14)
The message (Loaded 1000 rows)

You can hide debug logs and focus only on more critical messages by
changing the log level to INFO:

Example 9.2: train.py

The output shows only info, warning, and error logs. Debug logs are
now hidden.

2025-06-04 13:24:03 | INFO | train:main:12 - Training RandomForest

model

2025-06-04 13:24:03 | WARNING | train:main:13 - Missing values

detected

2025-06-04 13:24:03 | ERROR | train:main:14 - Model training failed

9.3 Use Loguru for Python Logging

While logging offers many benefits, data scientists often prefer print
statements due to their simplicity and minimal setup requirements.
For small scripts and one-time tasks, the extra overhead of
configuring a logging framework may seem unnecessary.

logging.basicConfig(

 level=logging.INFO,

 format="%(asctime)s | %(levelname)s | "

 "%(module)s:%(funcName)s:%(lineno)d - %(message)s",

 datefmt="%Y-%m-%d %H:%M:%S",

)

This is where Loguru comes in handy. It’s a library that combines the
power of logging with the ease of using print statements.

To install Loguru, run the following command:

In the following sections, we’ll explore how Loguru simplifies the
logging process.

9.3.1 Elegant Out-of-the-Box
Functionality

Let’s see how Loguru compares to logging in terms of out-of-the-box
functionality.

9.3.2 With logging

By default, the logging library produces bland and less informative
logs:

pip install loguru

import logging

logging.basicConfig(level=logging.DEBUG)

def main():

 logging.debug("This is a debug message")

 logging.info("This is an info message")

 logging.warning("This is a warning message")

 logging.error("This is an error message")

if __name__ == "__main__":

 main()

https://github.com/Delgan/loguru

DEBUG:root:This is a debug message

INFO:root:This is an info message

WARNING:root:This is a warning message

ERROR:root:This is an error message

9.3.3 With Loguru

In contrast, Loguru generates colorful and informative logs by
default:

9.3.4 Format Logs Easily

Formatting logs allows you to add useful information to logs such as
timestamps, log levels, module names, function names, and line
numbers. Here’s how to do it with both logging and Loguru:

9.3.4.1 With logging

The traditional logging approach uses the % formatting, which is not
intuitive to use and maintain:

from loguru import logger

def main():

 logger.debug("This is a debug message")

 logger.info("This is an info message")

 logger.warning("This is a warning message")

 logger.error("This is an error message")

if __name__ == "__main__":

 main()

9.3.4.2 With Loguru

In contrast, Loguru uses the {} formatting, which is much more
readable and easy to use:

In the code above:

logger.remove() clears the default Loguru handler so that only
your custom configuration is active.
logger.add(sys.stdout, ...) explicitly adds a stream handler that
logs to the terminal using your specified format and log level.

Other common options for time formatting:

Category Token Output Example

Year YYYY 2025

import logging

logging.basicConfig(

 level=logging.INFO,

 format="%(asctime)s | %(levelname)s | "

 "%(module)s:%(funcName)s:%(lineno)d - %(message)s",

 datefmt="%Y-%m-%d %H:%M:%S",

)

import sys

from loguru import logger

Remove the default handler

logger.remove()

Add a stream handler

logger.add(

 sys.stdout,

 format="{time:YYYY-MM-DD HH:mm:ss} | {level} | "

 "{module}:{function}:{line} - {message}",

 level="INFO",

)

Category Token Output Example

Month MM 01 … 12

Day DD 01 … 31

Day of Week ddd Mon, Tue, Wed

Hour (24h) HH 00 … 23

Hour (12h) hh 01 … 12

Minute mm 00 … 59

Second ss 00 … 59

Microsecond SSSSSS 000000 … 999999

AM/PM A AM, PM

Timezone Z +00:00, -07:00

9.3.5 Save Logs to File

Saving logs to a file can help preserve important information over
time and aid debugging. Here’s how to do it with both logging and
Loguru:

9.3.5.1 With logging

Saving logs to both a file and the terminal using the logging module
requires setting up separate handlers:

FileHandler: writes log messages to a specified file so that they
can be reviewed later
StreamHandler: sends log messages to the console (stdout),
allowing you to see logs in real time during execution

import logging

logging.basicConfig(

9.3.5.2 With Loguru

Loguru makes it easy to log to both a file and the terminal
simultaneously. Just call the add() method with the file path, format,
and log level. Since Loguru logs to the terminal by default, you only
need to add the file handler:

9.3.6 Rotate and Retain Logs

Without log rotation, long-running processes like ETL jobs or model
training can generate massive log files that waste disk space and are
hard to manage. Automatic rotation keeps logs compact and
readable.

Here’s how to do it with both logging and Loguru:

9.3.6.1 With logging

 level=logging.DEBUG,

 format="%(asctime)s | %(levelname)s | "

 "%(module)s:%(funcName)s:%(lineno)d - %(message)s",

 datefmt="%Y-%m-%d %H:%M:%S",

 handlers=[

 logging.FileHandler(filename="info.log"),

 logging.StreamHandler(),

],

)

from loguru import logger

logger.add(

 "info.log",

 format="{time:YYYY-MM-DD HH:mm:ss} | {level} | "

 "{module}:{function}:{line} - {message}",

 level="INFO",

)

To automatically rotate the log file using the logging module, you
need to use TimedRotatingFileHandler, which has the following key
parameters:

filename: the file where logs are written.
when: the time interval for creating new log files. Use 'S' for
seconds, 'M' for minutes, 'H' for hours, 'D' for days, 'W0' – 'W6'
for weekdays, or 'midnight' for daily rotation at midnight.
interval: how often rotation should happen based on the unit
provided in when.
backupCount: how many rotated log files to keep before old ones
are deleted.

This setup gives you finer control, but requires more manual
configuration than Loguru.

9.3.6.2 With Loguru

With Loguru, you can rotate and retain logs in a single line using the
rotation and retention parameters in add():

import logging

from logging.handlers import TimedRotatingFileHandler

logger = logging.getLogger(__name__)

logger.setLevel(logging.DEBUG)

handler = TimedRotatingFileHandler(

 "debug.log", when="W0", interval=1, backupCount=4

)

handler.setLevel(logging.INFO)

handler.setFormatter(

 logging.Formatter(

 "%(asctime)s | %(levelname)s | "

 "%(module)s:%(funcName)s:%(lineno)d - %(message)s",

 datefmt="%Y-%m-%d %H:%M:%S",

)

)

logger.addHandler(handler)

rotation: when to create a new log file (e.g., size or time)
retention: how long to keep old log files

You can also customize log rotation and retention rules in Loguru
using different triggers and strategies:

Line 1
Automatically rotate if the file exceeds 500 MB
Line 2
Create a new log file daily at noon
Line 3
Rotate weekly
Line 5
Keep logs for 10 days, then delete old ones
Line 7
Compress rotated logs to save space

9.3.7 Filter Logs by Content

Filtering log messages helps you capture only the information you
care about, such as messages containing specific keywords or values.
Here’s how to do it with both logging and Loguru:

from loguru import logger

logger.add(

 "debug.log", level="INFO",

 rotation="1 week", retention="4 weeks",

)

logger.add("logs/file_1.log", rotation="500 MB")

logger.add("logs/file_2.log", rotation="12:00")

logger.add("logs/file_3.log", rotation="1 week")

logger.add("logs/file_X.log", retention="10 days")

logger.add("logs/file_Y.log", compression="zip")

9.3.7.1 With logging

To filter log messages based on custom content using the built-in
logging module, you need to define and attach a custom Filter class
to the logger:

Example 9.3: main.py

Example 9.4: main.py (Continued)

2025-07-08 16:01:08,230 | INFO | main:main:22 - Hello World

9.3.7.2 With Loguru

With Loguru, filtering log messages is simple: just pass a filter
function to the add() method, no need to define a separate filter class.

Example 9.5: main.py

import logging

logging.basicConfig(

 filename="hello.log", level=logging.INFO,

 format="%(asctime)s | %(levelname)s | "

 "%(module)s:%(funcName)s:%(lineno)d - %(message)s",

)

class CustomFilter(logging.Filter):

 def filter(self, record):

 return "Hello" in record.msg

Get the root logger and add the custom filter to it

logger = logging.getLogger()

logger.addFilter(CustomFilter())

def main():

 logger.info("Hello World")

 logger.info("Bye World")

if __name__ == "__main__":

 main()

2025-05-03 15:12:00.180 | INFO | __main__:main:8 - Hello World

9.3.8 Better Exception Logging

When exceptions occur, logging can help you understand not only
what went wrong, but also where and why. Here’s how traditional
logging compares with Loguru when it comes to capturing exception
details:

9.3.8.1 With logging

To catch and log exceptions using the built-in logging module, you
typically wrap your code in a try-except block and call
logging.exception() to capture the traceback:

Example 9.6: main.py

from loguru import logger

logger.remove()

logger.add(

 "hello.log",

 filter=lambda record: "Hello" in record["message"],

)

import logging

def divide(a, b):

 return a / b

def main():

 try:

 divide(1, 0)

 except ZeroDivisionError:

 logging.exception("Division by zero")

main()

This traceback doesn’t show the values of a and b, leaving you to
guess what inputs triggered the error.

Traceback (most recent call last):

 File ".../main.py", line 16, in nested

 division(1, c)

 File ".../main.py", line 11, in division

 return a / b

 ~~^~~

ZeroDivisionError: division by zero

9.3.8.2 With Loguru

Loguru improves debugging by capturing the full stack trace and the
state of local variables at each level.

Example 9.7: main.py

Example 9.8: main.py (Continued)

In the traceback, Loguru shows that a is 1 and b is 0, making it
immediately clear what inputs caused the failure.

> File ".../main.py", line 14, in <module>

 nested(0)

 └ <function nested at 0x106492520>

 File ".../main.py", line 10, in nested

from loguru import logger

def division(a, b):

 return a / b

def nested(c):

 try:

 division(1, c)

 except ZeroDivisionError:

 logger.exception("ZeroDivisionError")

if __name__ == "__main__":

 nested(0)

 division(1, c)

 │ └ 0

 └ <function division at 0x105051800>

 File ".../main.py", line 5, in division

 return a / b

 │ └ 0

 └ 1

ZeroDivisionError: division by zero

You can also capture and display full tracebacks in any function
simply by adding the @logger.catch decorator.

Example 9.9: main.py

> File ".../main.py", line 14, in <module>

 nested(0)

 └ <function nested at 0x100a5df80>

 File ".../main.py", line 10, in nested

 division(1, c)

 │ └ 0

 └ <function division at 0x1003b5b20>

 File ".../main.py", line 5, in division

 return a / b

 │ └ 0

 └ 1

ZeroDivisionError: division by zero

from loguru import logger

def divide(a, b):

 return a / b

@logger.catch

def main():

 divide(1, 0)

main()

9.3.9 Pretty Logging with Colors

9.3.9.1 With logging

Traditional logging does not support color formatting out of the box.
You would need to install and configure a third-party library like
colorlog to manually define colorized output formats.

9.3.9.2 With Loguru

By default, Loguru outputs logs with colorized formatting in the
terminal. You can also customize the color for each log level using
the colorize option and the {level.color} formatting token:

import logging

from colorlog import ColoredFormatter

formatter = ColoredFormatter(

 "%(log_color)s%(asctime)s | %(levelname)s | %(message)s",

 datefmt="%Y-%m-%d %H:%M:%S",

 log_colors={

 'DEBUG': 'cyan',

 'INFO': 'green',

 'WARNING': 'yellow',

 'ERROR': 'red',

 'CRITICAL': 'bold_red',

 }

)

handler = logging.StreamHandler()

handler.setFormatter(formatter)

logger = logging.getLogger(__name__)

logger.addHandler(handler)

logger.setLevel(logging.DEBUG)

logger.info("Colorized info message")

from loguru import logger

import sys

Here’s a quick reference of available color and style tags you can use
in your format strings:

Color Abbreviation Style Abbreviation

Black k Bold b

Blue e Dim d

Cyan c Normal n

Green g Italic i

Magenta m Underline u

Red r Strike s

White w

Yellow y

logger.remove()

logger.add(

 sys.stdout,

 colorize=True,

 format="<green>{time:YYYY-MM-DD HH:mm:ss}</green> | "

 "<level>{level}</level> | <cyan>{message}</cyan>",

)

if __name__ == "__main__":

 logger.debug("This is a debug message")

 logger.info("This is an info message")

 logger.warning("This is a warning message")

 logger.error("This is an error message")

You can also combine colors and styles in your format string by
nesting tags. For example: <red><bold>{message}</bold></red> will
show the message in bold red text.

9.4 Best Practices For Exception
Handling

9.4.1 Use Specific Exceptions

Avoid using generic exceptions like Exception because they don’t
specify what went wrong, making debugging and error handling
more difficult.

In the example below, the generic exception hides whether the error
stems from a missing file or empty data.

Error processing data: 'sales'

Use specific exceptions instead of generic ones to get clearer error
information. The code below catches specific exceptions

import pandas as pd

import numpy as np

def process_sales_data(filepath: str) -> pd.DataFrame:

 try:

 df = pd.read_csv(filepath)

 total_sales = df['sales'].sum()

 daily_average = df.groupby('date')['sales'].mean()

 return df

 except Exception as e:

 print(f"Error processing data: {e}")

if __name__ == "__main__":

 result = process_sales_data("data/sales_data.csv")

(FileNotFoundError, EmptyDataError, KeyError) with informative
messages, using a generic Exception handler only as a fallback.

2025-07-29 15:42:16,410 - ERROR - Column 'sales' not found

9.4.2 Use Else Outside of the Try Block

Avoid mixing operations that might fail with operations that are
guaranteed to work in the same block.

The code below mixes operations that might fail (sum(nums)) with
operations that are guaranteed to work (division and printing) in the
try block, making it harder to identify the source of a potential
TypeError.

def process_sales_data(filepath: str) -> pd.DataFrame:

 try:

 df = pd.read_csv(filepath)

 total_sales = df["sales"].sum()

 return df

 except FileNotFoundError:

 logging.error(f"File '{filepath}' not found")

 except pd.errors.EmptyDataError:

 logging.error(f"File '{filepath}' is empty")

 except KeyError:

 logging.error(f"Column 'sales' not found")

 except Exception as e:

 logging.error(f"Unexpected error: {e}")

if __name__ == "__main__":

 result = process_sales_data("data/sales_data.csv")

nums = [1, 2, "3"]

try:

 sum_nums = sum(nums)

 mean_nums = sum_nums / len(nums)

 print(f"The mean of the numbers is {mean_nums}.")

except TypeError as e:

 raise TypeError("Items in the list must be numbers") from e

TypeError

 2 try:

----> 3 sum_nums = sum(nums)

 4 mean_nums = sum_nums / len(nums)

TypeError: unsupported operand type(s) for +: 'int' and 'str'

Instead, use the else clause to separate operations that might fail
from those guaranteed to work. This approach:

Makes it easier to identify the source of a TypeError
Prevents mean calculation if the sum operation fails
Creates cleaner, more maintainable code structure

TypeError

 2 try:

----> 3 sum_nums = sum(nums)

 4 except TypeError as e:

TypeError: unsupported operand type(s) for +: 'int' and 'str'

9.5 Key Takeaways

1. Logging vs print:
Logging provides structured, timestamped output with
severity levels
Logs can be saved to files and filtered by level
Logging includes metadata like module name, function, and
line number

2. Loguru benefits:

nums = [1, 2, "3"]

try:

 sum_nums = sum(nums)

except TypeError as e:

 raise TypeError("Items in the list must be numbers") from e

else:

 mean_nums = sum_nums / len(nums)

 print(f"The mean of the numbers is {mean_nums}.")

Provides beautiful, colorful output out of the box
Simpler syntax compared to traditional logging
Better exception tracking with variable values
Easy configuration for file rotation and retention
Built-in support for filtering and formatting

3. Exception handling best practices:
Use specific exceptions instead of catching all exceptions
Use the else clause to separate error-prone code from safe
operations.

10 Data Validation

10.1 What Is Data Validation?

Data validation is the process of ensuring that data meets specified
criteria, formatting rules, and quality standards before processing.
Data validation helps maintain data integrity and prevents errors in
downstream operations.

10.2 Why Is Data Validation Essential?

10.2.1 Validate Data Schema

Schema validation identifies data type mismatches and missing fields
before processing begins, ensuring your pipeline receives correctly
formatted data.

Consider a scenario where you have a dataset with an “age” column
that’s expected to be an integer, but some values are stored as
strings:

import pandas as pd

import numpy as np

Create sample data with mixed age types

df = pd.DataFrame(

 {

 customer_id age transaction_amount

0 1 25 100.0

1 2 30 50.0

2 3 35 75.0

3 4 40 125.0

4 5 45 200.0

TypeError: '<' not supported between instances of 'str' and 'int'

With schema validation, we can confirm the “age” column contains
integers. Non-integer values flag the data as invalid, requiring
investigation (Figure 10.1).

Figure 10.1: Data schema validation

10.2.2 Ensure Consistent Data
Relationships

 "customer_id": [1, 2, 3, 4, 5],

 "age": [25, "30", 35, "40", 45], # Some values are strings

 "transaction_amount": [100.00, 50.00, 75.00, 125.00,
200.00],

 }

)

print(df)

try:

 young_customers = df[df["age"] < 35]

except TypeError as e:

 print("TypeError:", e)

Cross-column validation catches calculation errors and data
inconsistencies, preventing flawed analysis and incorrect business
decisions.

Consider a dataset tracking employee salaries and bonuses with a
calculation error:

Employee E002 shows total_compensation of 72000
The correct value should be 72500 (65000 salary + 7500 bonus)

employee_id salary bonus total_compensation

E001 50000 5000 55000

E002 65000 7500 72000

E003 45000 4000 49000

With schema validation, we can check that salary and bonus columns
sum to total_compensation for each employee (Figure 10.2).
Mismatched calculations flag the data as invalid for investigation.

Figure 10.2: Data consistent data relationships validation

10.2.3 Detect Outliers

Establishing baseline patterns and ranges in your data helps identify
anomalies that may indicate data quality issues or interesting

insights. Data outliers aren’t always erroneous, but you need to rule
out that possibility.

Consider analyzing customer transaction data with unusual spending
patterns. Figure 10.3 shows suspicious transactions (pink stars) with
significantly higher amounts than normal transactions (blue circles).

Figure 10.3: Transaction distribution showing normal and suspicious transactions

With schema validation, we can establish rules that flag transaction
amounts outside $40-$160 as outliers requiring manual
investigation (Figure 10.4).

Figure 10.4: Data distribution validation

10.2.4 Validate Data Freshness

Working with outdated data causes serious problems in data science
projects:

Inaccurate insights and predictions that don’t reflect current
reality
Flawed business decisions based on stale information
Poor model performance due to training on obsolete patterns
Wasted time and resources analyzing irrelevant historical data

Data freshness validation prevents these issues by ensuring you work
with current, relevant information.

Consider this example: a recommender system built on 2019
transaction data fails when shopping patterns shift due to events like
COVID-19. Figure 10.5 demonstrates how the pandemic’s online
shopping surge (pink line) exceeded pre-pandemic forecasts (blue
dashed line).

Figure 10.5: Real vs forecasted online shopping trends during COVID-19

With schema validation, we can establish rules that flag transaction
data from before 2022 as stale requiring further investigation
(Figure 10.6).

Figure 10.6: Data freshness validation

10.2.5 Detect Missing Values

Missing value validation catches data gaps early, ensuring your
analyses and models use complete, reliable data for accurate
insights.

Consider sales data with missing values for certain product
categories or regions. As shown in Figure 10.7, missing values (blue
bars with “Missing Data” labels) create gaps in regional analysis that
could lead to incorrect business decisions.

Figure 10.7: Regional sales data with missing values highlighted

With schema validation, we can establish rules that flag sales data
with missing values as invalid requiring further investigation
(Figure 10.8).

Figure 10.8: Data missing values validation

10.2.6 Validate Data Uniqueness

Data uniqueness validation ensures your analyses and models are
based on clean, non-redundant information, helping you draw
accurate insights and make well-informed decisions.

Consider a customer database with 10,000 records containing 800
duplicate entries, leaving only 9,200 unique customers. As shown in
Figure 10.9, duplicates significantly impact metrics:

With duplicates: 1,500 churned customers out of 10,000 total
records = 15% churn rate
Without duplicates: 1,500 churned customers out of 9,200
unique customers = 16.3% churn rate

Figure 10.9: Customer distribution comparison with and without duplicates

With schema validation, we can establish rules that flag customer
data with duplicates as invalid requiring further investigation
(Figure 10.10).

Figure 10.10: Data uniqueness validation

10.2.7 Validate Data Volume

Data volume validation ensures you have enough information to
develop reliable forecasting models and make well-informed
decisions.

Consider predicting future market trends based on historical data. As
shown in Figure 10.11, small datasets (pink dots) produce forecasting
models (dashed pink line) that fail to capture underlying patterns
(black line). Larger datasets (blue dots) generate forecasts (solid blue
line) that closely follow true market trends.

Figure 10.11: Market trend forecasting comparison between small and large datasets

With schema validation, we can establish rules that flag historical
data with less than 1000 rows as invalid requiring further
investigation (Figure 10.12).

Figure 10.12: Data volume validation

10.3 Data Validation Made Easy with
Pandera

Now that we’ve discussed the importance of data validation, let’s dive
deeper into how to validate your data effectively with Pandera.

Pandera is an open-source data validation library that provides a
simple and expressive way to define data validation rules. Pandera
supports a wide range of data formats, including CSV, JSON, and
SQL, and can be easily integrated into your data pipeline.

To install Pandera, type:

10.3.1 Basic Building Blocks

To learn how Pandera works, let’s start with creating a bank dataset:

We want to ensure the following conditions are met:

customer_id is an integer, greater than 1, and is unique.
age is an integer, greater than 0 and less than 120.
transaction_amount is a float and greater than 0.

pip install pandera

import pandas as pd

Create sample data with mixed age types

df = pd.DataFrame(

 {

 "customer_id": [1, 2, 3, 4, 5],

 "age": [25, 30, 35, 40, 45],

 "transaction_amount": [100.0, 50.0, 75.0, 125.0, 200.0],

 }

)

https://pandera.readthedocs.io/

To validate the data against these conditions, we need to define a
schema using Pandera. Here are the three main classes that Pandera
provides for schema definition:

A DataFrameSchema defines the structure and constraints of a
Pandas DataFrame.
A Column represents a single column in a DataFrame. A Column is
used to define the properties and constraints of a column, such
as its data type, allowed values, and relationships to other
columns.
A Check represents a single constraint or validation rule for a
column or DataFrame.

Here’s an example:

Line 9
Checks that customer_id is an integer, greater than or equal to 1, and
is unique.
Line 12

import pandera.pandas as pa

Define the schema

schema = pa.DataFrameSchema(

 {

 "customer_id": pa.Column(

 int, checks=pa.Check.ge(1), unique=True

),

 "age": pa.Column(

 int, checks=pa.Check.between(0, 120)

),

 "transaction_amount": pa.Column(

 float, checks=pa.Check.ge(0)

),

 }

)

Validate the DataFrame

validated_df = schema.validate(df)

print(validated_df)

Checks that age is an integer, greater than 0 and less than 120.
Line 15
Checks that transaction_amount is a float and greater than 0.
Line 19
Validates a DataFrame df against this schema.

If all validations pass, the DataFrameSchema object returns the
validated DataFrame.

If any of these conditions are not met, Pandera will raise a
SchemaError.

SchemaError: series 'customer_id' contains duplicate values:

1 2

2 2

Name: customer_id, dtype: int64

10.3.2 Checks

Check objects accept a function as a required argument, which is
expected to take a pa.Series input and output a boolean or a Series of
boolean values. For the check to pass, all of the elements in the
boolean series must evaluate to True.

Example of validation failure

invalid_df = pd.DataFrame(

 {

 "customer_id": [1, 2, 2, 4, 5], # Duplicate ID

 "age": [25, 150, -5, 40, 45], # Invalid ages

 "transaction_amount": [100.00, 50.00, 75.00, 125.00,
200.00],

 }

)

This will raise SchemaError

try:

 schema.validate(invalid_df)

except pa.errors.SchemaError as err:

 print('SchemaError:', err)

The following code shows how to create a Check that validates even
numbers:

column1

0 2

1 4

2 6

3 8

Figure 10.13 shows how the Check function evaluates each value and
determines pass/fail status.

Figure 10.13: Data validation check example

10.3.2.1 Built-in Checks

Pandera provides a variety of built-in checks, making it easier to
check data. Let’s create a schema with some built-in checks:

check_is_even = pa.Check(lambda s: s % 2 == 0)

schema = pa.DataFrameSchema(

 {"column1": pa.Column(int, check_is_even)}

)

schema.validate(pd.DataFrame({"column1": [2, 4, 6, 8]}))

Use the validate method to validate the data against the schema:

Validation passed!

 customer_id email signup_date

0 CUST01 john@mail.com 2023-01-01

1 CUST02 jane@mail.com 2023-02-15

2 CUST03 bob@mail.com 2023-03-30

See the Check API reference for a complete list of built-in checks.

10.3.2.2 Column Check Groups

from datetime import datetime

customer_schema = pa.DataFrameSchema(

 {

 "customer_id": pa.Column(

 str, checks=pa.Check.str_length(min_value=5)

),

 "email": pa.Column(str, checks=pa.Check.str_contains("@")),

 "signup_date": pa.Column(

 datetime, checks=pa.Check.le(datetime.now())

), # Date not in future

 }

)

customer = pd.DataFrame(

 {

 "customer_id": ["CUST01", "CUST02", "CUST03"],

 "email": ["john@mail.com", "jane@mail.com",
"bob@mail.com"],

 "signup_date": ["2023-01-01", "2023-02-15", "2023-03-30"],

 }

)

customer["signup_date"] = pd.to_datetime(customer["signup_date"])

Validate data

validated_df = customer_schema.validate(customer)

print("Validation passed!")

print(validated_df)

https://pandera.readthedocs.io/en/stable/reference/generated/pandera.api.checks.Check.html#pandera.api.checks.Check

Column checks support grouping by a different column so that you
can make assertions about subsets of the column of interest.

In the following example, the groupby="store" parameter groups
profit data by store location, then compares mean values between CA
and NY stores.

Validation passed!

Figure 10.14 illustrates this example.

Create sample sales data

df = pd.DataFrame(

 {

 "store": ["NY", "CA", "NY", "CA"],

 "profit": [200.0, 300.0, 300.0, 400.0],

 }

)

Define schema with wide check using groupby

schema = pa.DataFrameSchema(

 {

 "store": pa.Column(str),

 "profit": pa.Column(

 float,

 # Check CA stores have higher average profit than NY

 pa.Check(

 lambda g: g["CA"].mean() > g["NY"].mean(),

 groupby="store",

),

),

 }

)

Validate the DataFrame

validated_df = schema.validate(df)

print("Validation passed!")

Figure 10.14: Data validation grouped validation

10.3.2.3 Wide Checks

Pandera also supports validating relationships between columns
using the checks parameter at the DataFrameSchema level.

In the following example, the wide check applies a row-wise
calculation to verify the profit formula across the entire DataFrame.

Validation passed!

Create sample sales data

df = pd.DataFrame({

 "revenue": [1000.0, 1500.0, 1200.0],

 "expenses": [800.0, 1200.0, 900.0],

 "profit": [200.0, 300.0, 300.0],

})

Define schema with wide check

schema = pa.DataFrameSchema(

 columns={

 "revenue": pa.Column(float),

 "expenses": pa.Column(float),

 "profit": pa.Column(float),

 },

 checks=pa.Check(

 lambda df: df["profit"] == df["revenue"] - df["expenses"]

),

)

validated_df = schema.validate(df)

print("Validation passed!")

10.3.3 Validation Decorator

10.3.3.1 Check Input

To validate the inputs of a function before calling that function, use
the check_input decorator. Let’s create a schema for the inputs of the
calculate_grade function:

If the input data conforms to the schema, the function will return the
data with the grade column added:

from pandera import check_input

input_schema = pa.DataFrameSchema(

 {

 "name": pa.Column(str),

 "age": pa.Column(int, pa.Check.between(0, 120)),

 "score": pa.Column(float, pa.Check.between(0, 100)),

 }

)

@check_input(input_schema)

def calculate_grade(data: pd.DataFrame):

 data["grade"] = pd.cut(

 data["score"],

 bins=[0, 70, 80, 90, 100],

 labels=["F", "C", "B", "A"],

 include_lowest=True,

)

 return data

df = pd.DataFrame(

 {

 "name": ["John", "Jane", "Bob"],

 "age": [25, 30, 35],

 "score": [95.5, 88.3, 92.7],

 }

)

 name age score grade

0 John 25 95.5 A

1 Jane 30 88.3 B

2 Bob 35 92.7 A

If the input data does not conform to the schema, an error will be
raised, preventing the function from executing with invalid data.

SchemaError: error in check_input decorator of function

'calculate_grade': Column 'score' failed element-wise

validator number 0: in_range(0, 100) failure cases: 120.0

10.3.3.2 Check Output

To validate the output of a function, use the check_output decorator.
Let’s create an output schema for the calculate_grade function:

result = calculate_grade(df)

print(result)

invalid_df = pd.DataFrame(

 {

 "name": ["John", "Jane", "Bob"],

 "age": [25, 30, 35],

 "score": [95.5, 88.3, 120.0],

 }

)

try:

 result = calculate_grade(invalid_df)

except pa.errors.SchemaError as err:

 print("SchemaError:", err)

from pandera import check_output

output_schema = pa.DataFrameSchema(

 {

 "name": pa.Column(str),

 "age": pa.Column(int, pa.Check.between(0, 120)),

 "score": pa.Column(float, pa.Check.between(0, 100)),

 "grade": pa.Column(

 str, pa.Check(lambda x: x.isin(["A", "B", "C", "F"]))

If the output data does not conform to the schema, an error will be
raised:

),

 }

)

@check_input(input_schema)

@check_output(output_schema)

def calculate_grade(data: pd.DataFrame):

 data["grade"] = pd.cut(

 data["score"],

 bins=[0, 70, 80, 90, 100],

 labels=["F", "C", "B", "A"],

 include_lowest=True,

)

 return data

@check_output(output_schema)

def calculate_grade(data: pd.DataFrame):

 data["grade"] = pd.cut(

 data["score"],

 bins=[0, 70, 80, 90, 100],

 labels=["F", "C", "B", "X"],

 include_lowest=True,

)

 return data

df = pd.DataFrame(

 {

 "name": ["John", "Jane", "Bob"],

 "age": [25, 30, 35],

 "score": [95.5, 88.3, 92.7],

 }

)

try:

 result = calculate_grade(df)

except pa.errors.SchemaError as err:

 print("SchemaError:", err)

SchemaError: error in check_output decorator of function

'calculate_grade':

Column 'grade' failed element-wise validator number 0:

<Check <lambda>> failure cases: X, X

10.3.3.3 Check Both Inputs and Outputs

To check both inputs and outputs, use the check_io decorator in
Pandera. Let’s create a schema for the inputs and outputs of the
calculate_grade function:

If the input and output data conform to the schema, the function will
return the data with the grade column added:

 name age score grade

0 John 25 95.5 A

1 Jane 30 88.3 B

2 Bob 35 92.7 A

from pandera import check_io

@check_io(data=input_schema, out=output_schema)

def calculate_grade(data: pd.DataFrame):

 data["grade"] = pd.cut(

 data["score"],

 bins=[0, 70, 80, 90, 100],

 labels=["F", "C", "B", "A"],

 include_lowest=True,

)

 return data

df = pd.DataFrame(

 {

 "name": ["John", "Jane", "Bob"],

 "age": [25, 30, 35],

 "score": [95.5, 88.3, 92.7],

 }

)

result = calculate_grade(df)

print(result)

If either the inputs or the output do not conform to their respective
schemas, Pandera will raise an error:

SchemaError: Column 'score' failed element-wise validator number 0:

in_range(0, 100) failure cases: 120.0

10.3.4 Other Arguments for Column
Validation

10.3.4.1 Deal with Null Values

Pandera raises errors for null values by default. Use nullable=True to
allow missing values in a column.

In the following example, setting nullable=True allows the schema to
accept missing values in the name and age columns.

invalid_df = pd.DataFrame(

 {

 "name": ["John", "Jane", "Bob"],

 "age": [25, 30, 35],

 "score": [95.5, 88.3, 120],

 }

)

try:

 result = calculate_grade(invalid_df)

except pa.errors.SchemaError as err:

 print("SchemaError:", err)

schema = pa.DataFrameSchema(

 {

 "id": pa.Column(int), # Does not allow nulls

 "name": pa.Column(str, nullable=True), # Allows nulls

 "age": pa.Column(float, nullable=True), # Allows nulls

 }

)

df = pd.DataFrame(

Validation passed!

10.3.4.2 Deal with Duplicates

Pandera allows duplicates by default. Use unique=True to reject
duplicate values in a column.

In the following example, setting unique=True causes Pandera to raise
a SchemaError when the id column contains duplicate values.

SchemaError: series 'id' contains duplicate values:

0 1

1 1

Name: id, dtype: int64

 {

 "id": [1, 2, 3],

 "name": ["John", None, "Mary"],

 "age": [25.0, 30.0, None],

 }

)

validated_df = schema.validate(df)

print("Validation passed!")

Define schema with unique constraint

schema = pa.DataFrameSchema(

 {

 "id": pa.Column(int, unique=True), # Must be unique

 "name": pa.Column(str), # Duplicates allowed

 }

)

df = pd.DataFrame(

 {"id": [1, 1, 2], "name": ["John", "Jane", "Mary"]}

)

try:

 validated_df = schema.validate(df)

except pa.errors.SchemaError as e:

 print("SchemaError:", e)

10.3.4.2.1 Required Columns

Pandera requires all schema columns to be present by default. Use
required=False to make columns optional.

In the following example, setting required=False allows the schema to
validate successfully even when the age column is missing.

Validation passed!

10.3.4.3 Convert Data Types

Pandera disables type conversion by default. Use coerce=True to
automatically convert column data types, or raise an error if
conversion fails.

In the following example, since coercion from string to integer in the
id column is not possible, Pandera raises an error.

Define schema with required columns

schema = pa.DataFrameSchema(

 {

 "id": pa.Column(int), # Required column

 "name": pa.Column(str), # Required column

 "age": pa.Column(int, required=False), # Optional column

 }

)

df = pd.DataFrame(

 {"id": [1, 2, 3], "name": ["John", "Jane", "Mary"]}

)

validated_df = schema.validate(df)

print("Validation passed!")

schema = pa.DataFrameSchema(

 {

 "id": pa.Column(int, coerce=True),

 "price": pa.Column(float, coerce=True),

SchemaError: Error while coercing 'id' to type int64:

Could not coerce <class 'pandas.core.series.Series'> into type

int64:

 index failure_case

0 0 12.34

10.3.4.4 Match Patterns

To validate multiple columns with shared patterns, set regex=True
instead of defining each column individually.

In the following example, regex=True applies the same validation
rules to all columns matching the score_.* pattern.

 }

)

df = pd.DataFrame(

 {

 "id": ["12.34", "2", "3"], # Will fail coercion to int

 "price": ["10.99", "20.50", "15.75"],

 }

)

try:

 validated_df = schema.validate(df)

except pa.errors.SchemaError as e:

 print("SchemaError:", e)

Define schema using regex to match column patterns

schema = pa.DataFrameSchema({

 # Match any column starting with 'score_'

 'score_.*': pa.Column(float, regex=True, nullable=True),

 # Regular columns without regex

 'student_id': pa.Column(int),

 'name': pa.Column(str)

})

df = pd.DataFrame({

 'student_id': [1, 2, 3],

 'name': ['John', 'Mary', 'Bob'],

 'score_math': [85.5, 90.0, None],

Validation passed!

10.3.5 Schema Model

Pandera also supports creating models using similar syntax to
Pydantic models.

To demonstrate how to create a DataFrameModel, let’s consider the
following schema with DataFrameSchema:

Transform this schema into a DataFrameModel using three key
changes:

 'score_science': [88.0, None, 92.5],

 'score_history': [78.5, 88.5, 95.0],

})

validated_df = schema.validate(df)

print("Validation passed!")

Define the schema using DataFrameSchema

customer_schema = pa.DataFrameSchema(

 {

 "customer_id": pa.Column(

 str,

 checks=pa.Check.str_length(

 min_value=5, max_value=10

),

),

 "email": pa.Column(

 str, checks=pa.Check.str_contains("@")

),

 "signup_date": pa.Column(

 str,

 checks=pa.Check(

 lambda s: pd.to_datetime(s) <= pd.Timestamp.now()

),

),

 }

)

Apply Series[str] type annotations instead of Column(str)
Apply @pa.check decorators instead of lambda functions
Organize validations within a reusable class structure

The DataFrameModel approach provides IDE support, static type
checking, and explicit validation logic.

Validate the data against the schema using DataFrameModel is similar
to using DataFrameSchema:

Validation passed!

from pandera.typing import Series

class CustomerSchema(pa.DataFrameModel):

 customer_id: Series[str] = pa.Field(

 str_length={"min_value": 5, "max_value": 10}

)

 email: Series[str] = pa.Field(str_contains="@")

 signup_date: Series[str]

 @pa.check("signup_date")

 def check_date_not_in_future(

 cls, signup_date: Series[str]

) -> Series[bool]:

 return pd.to_datetime(signup_date) < pd.Timestamp.now()

Example data

customer_data = pd.DataFrame(

 {

 "customer_id": ["CUST01", "CUST02"],

 "email": ["john@mail.com", "jane@mail.com"],

 "signup_date": ["2023-01-01", "2023-02-15"],

 }

)

Validate data

validated_df = customer_schema.validate(customer_data)

print("Validation passed!")

You can also use DataFrameModel with the @pa.check_types decorator to
validate function inputs and outputs against the schema defined in
the function signature.

For example, you can set up the schema for the function inputs and
outputs.

Or use the schema to validate the function inputs and outputs.

from pandera.typing import Series, DataFrame

import hashlib

class CustomerSchema(pa.DataFrameModel):

 customer_id: Series[str] = pa.Field(

 str_length={"min_value": 5, "max_value": 10}

)

 email: Series[str] = pa.Field(str_contains="@")

class AnonymizedCustomerSchema(pa.DataFrameModel):

 customer_id: Series[str] = pa.Field(

 str_length={"min_value": 5, "max_value": 10}

)

 anonymized_email: Series[str] = pa.Field(

 str_length={"min_value": 32, "max_value": 32}

)

@pa.check_types

def anonymize_customer_data(

 df: DataFrame[CustomerSchema],

) -> DataFrame[AnonymizedCustomerSchema]:

 """

 Returns a DataFrame with hashed emails for data privacy

 """

 df = df.copy()

 # Hash email addresses

 df["anonymized_email"] = df["email"].apply(

 lambda x: hashlib.md5(x.encode()).hexdigest()

)

10.3.6 Export and Load From a YAML File

10.3.6.1 Export to YAML

Pandera can export Python schemas to YAML format. This enables
sharing validation requirements with team members who don’t use
Python.

The following example exports a schema to YAML using the
to_yaml() method:

The resulting schema.yml file will have the following structure:

 # Drop original email column

 df = df.drop("email", axis=1)

 return df

from pathlib import Path

Define the schema

schema = pa.DataFrameSchema(

 {

 "customer_id": pa.Column(

 int, checks=pa.Check.ge(1), unique=True

)

 }

)

Get a YAML object

yaml_schema = schema.to_yaml()

Save to a file

f = Path("data/schema.yml")

f.touch()

f.write_text(yaml_schema)

10.3.6.2 Load from YAML

Use pa.io.from_yaml(yaml_schema) to load a schema from a YAML file
into your Python code.

10.4 Best Practices for Data Validation

10.4.1 Validate Data at the Point of Entry

Validating data at entry points prevents wasted computation and
provides immediate feedback on data quality issues.

schema.yml

schema_type: dataframe

version: 0.17.2

columns:

 customer_id:

 title: null

 description: null

 dtype: int64

 nullable: false

 checks:

 ge: 1

 unique: true

 coerce: false

 required: true

 regex: false

checks: null

index: null

from pathlib import Path

f = Path("data/schema.yml")

with f.open() as file:

 yaml_schema = file.read()

schema = pa.io.from_yaml(yaml_schema)

In the following example, data type errors are discovered late during
computation, after processing has already begun.

Error during analysis: unsupported operand type(s) for +: 'int' and

'str'

Instead, validate data immediately when it enters the system using
schema validation before any processing begins. Here’s an example:

def analyze_sales_data(sales_df: pd.DataFrame) -> dict:

 # Problems only discovered during processing

 revenue = sales_df["price"] * sales_df["quantity"]

 return {

 "total_revenue": revenue.sum(),

 "max_sale": sales_df["quantity"].max(),

 }

if __name__ == "__main__":

 # Data with issues

 data = pd.DataFrame(

 {

 "price": [50, 100, "invalid", 75],

 "quantity": [5, 3, 2, "error"],

 }

)

 try:

 results = analyze_sales_data(data)

 print(results)

 except Exception as e:

 print(f"Error during analysis: {e}")

Define schema for sales DataFrame

sales_schema = pa.DataFrameSchema(

 {

 "price": pa.Column(float, checks=[pa.Check.ge(0)]),

 "quantity": pa.Column(int, checks=[pa.Check.ge(0)]),

 }

)

Run the analyze_sales_data function with a DataFrame containing
mixed data types:

The validation decorator prevents processing and reports the type
mismatch immediately.

SchemaError: error in check_input decorator of function

'analyze_sales_data':

expected series 'price' to have type float64, got object

10.4.2 Validate Only Critical Columns

Avoid validating every column in large datasets. Focus validation on
essential columns that directly impact your analysis to reduce
processing overhead.

In the following code, we only create a schema for the amount and
store columns, which are used in the calculation:

@check_input(sales_schema)

def analyze_sales_data(sales_df: pd.DataFrame) -> dict:

 revenue = sales_df["price"] * sales_df["quantity"]

 return {

 "total_revenue": revenue.sum(),

 "max_sale": sales_df["quantity"].max(),

 }

data = pd.DataFrame(

 {

 "price": [50, 100, "invalid", 75],

 "quantity": [5, 3, 2, "error"],

 }

)

try:

 results = analyze_sales_data(data)

 print(results)

except pa.errors.SchemaError as e:

 print("SchemaError:", e)

Even if the DataFrame contains additional columns, only the amount
and store columns are validated:

10.5 Key Takeaways

1. Benefits of data validation:
Prevents misleading analyses and incorrect conclusions by
ensuring data quality
Prevents cascading negative effects on downstream systems
and models
Saves computational resources by catching issues early
before processing
Ensures data freshness and relevance for accurate insights
Helps detect and handle outliers and anomalies

Only validate columns used in the calculation

schema = pa.DataFrameSchema(

 {

 "amount": pa.Column(float, checks=pa.Check.gt(0)),

 "store": pa.Column(

 str, checks=pa.Check.isin(["A", "B"])

),

 }

)

@pa.check_input(schema)

def get_amount_by_store(df):

 return df.groupby("store")["amount"].sum()

df = pd.DataFrame(

 {

 "customer_id": [1, 2, 3],

 "amount": [100.0, 200.0, 300.0],

 "date": ["2023-01-01", "2023-01-02", "2023-01-03"],

 "store": ["A", "B", "A"],

 }

)

amount_by_store = get_amount_by_store(df)

Identifies missing values that could impact analysis
2. Features of Pandera:

Schema definition using DataFrameSchema or
DataFrameModel
Built-in checks for common validation scenarios
Support for custom validation functions
Decorator-based validation for function inputs and outputs
YAML export/import for sharing validation rules

3. Best practices:
Validate data at the point of entry to catch issues early
Focus validation on critical columns that impact your
analysis

11 Data Version Control

11.1 What Is Data Version Control?

Data Version Control is the practice of tracking and managing
changes to data files and datasets over time, in a similar way to how
traditional version control systems handle code. Data version control
helps maintain data lineage, reproducibility, and collaboration in
data science projects.

11.2 Why Is Data Version Control
Essential?

11.2.1 Replicate Experiments

Comprehensive versioning helps maintain consistency and
reproducibility, even as your datasets and codebase evolve over time.

Imagine you’ve developed a machine learning model that achieves
excellent performance on a specific dataset. After several months,
you receive an updated version of the dataset with new records and
corrections. When you retrain your model on this new dataset, you
discover the model performs poorly compared to the original
version.

By tracking both your data and models, you can easily roll back to
previous versions of your data and code, as shown in Figure 11.1.

Figure 11.1: Dataset versioning with rollback capability

11.2.2 Version Control Large Datasets

Data version control keeps your Git repository lean while tracking
dataset and model changes effectively.

Storing large datasets directly in Git repositories presents several
challenges:

Git repositories become bloated when storing large binary files.
Common Git operations (cloning, fetching, pushing) slow down
significantly.
Tracking changes and understanding dataset evolution over
time is difficult.

Data version control addresses these issues by storing datasets
remotely (Amazon S3, Google Cloud Storage, or local servers) and
maintaining only lightweight references in Git. This separation
ensures efficient version control for both code and data.

Figure 11.2 illustrates this workflow.

Figure 11.2: Dataset versioning with remote storage

11.2.3 Share and Sync Datasets

Data version control enables team members to share, sync, and
collaborate on datasets automatically. This ensures everyone works
with identical, consistent data across the entire project.

Teams face two critical problems when manually managing datasets:

Inconsistent Versions: Team members work with different
dataset versions, producing conflicting analyses and unreliable
results.
Inefficient Workflow: Large dataset transfers create
bottlenecks that slow progress and fragment team coordination.

These issues reduce productivity and prevent effective collaboration,
as shown in Figure 11.3.

Figure 11.3: The problem of manually sharing and syncing datasets

Data version control transforms team collaboration by automatically
synchronizing datasets across all members. Teams can share large
datasets efficiently without manual file transfers or version
mismatches, as demonstrated in Figure 11.4.

Figure 11.4: Dataset collaboration with data version control

11.3 Use DVC for Data Version Control

DVC (Data Version Control) is an open-source version control
system designed specifically for machine learning projects. DVC
helps track large files, datasets, and machine learning models while
working alongside Git for code version control.

Main components:

Tracking System: Manages data versions using metadata and
hash values
Storage Backend: Supports various remote storage options
(S3, GCP, etc.)
Pipeline Management: Defines and tracks data processing
workflows
Git Integration: Works with Git to version control both code
and data

To install DVC, use pip:

pip install dvc

https://dvc.org/

11.3.1 Get Started

Initialize DVC inside an existing Git repository:

After running dvc init, DVC sets up the project with the necessary
configuration to start tracking data. Your directory structure will
look like this:

.

├── .dvc/ # DVC config and internal files

├── .dvcignore # Like .gitignore but for DVC operations

├── .git/ # Git repository

└── (your project files)

11.3.2 Track Data

Git stores code files directly in its repository (Figure 11.5 (a)). DVC
stores only metadata, keeping actual data files separate (Figure 11.5
(b)).

Figure 11.5: Git vs. DVC tracking approaches

For example, if you have a data/ directory with your raw files, you
can use dvc add to start tracking it:

dvc init

(a) Git tracking

(b) DVC tracking

This creates a data.dvc metadata file. DVC stores three key pieces of
information in this file:

outs: Lists the tracked outputs
md5: A unique hash that identifies the data version
path: Location of the tracked data

Example 11.1: data.dvc

Since this file is lightweight, it can be easily committed to Git:

When you run dvc add data/, DVC also adds data/ to the .gitignore
file to prevent Git from tracking the actual data/ directory.

Example 11.2: .gitignore

The directory structure after running dvc add data/ looks like this:

.

├── data/ # Contains your actual dataset

├── data.dvc # Metadata file tracked by Git

└── .gitignore # Contains an entry to ignore /data/

11.3.3 Store Data Remotely

While the metadata file is lightweight, the actual data files can be
large. To store the actual data files in a remote location, you can use
DVC’s remote storage feature.

dvc add data/

outs:

- md5: 86451bd526f5f95760f0b7a412508746.dir

 path: data

git add data.dvc .gitignore

git commit -m "Track dataset with DVC"

data/

DVC supports many storage backends like S3, GCS, Azure, SSH, and
Google Drive. In this section, we’ll use Amazon S3 as an example.

11.3.3.1 Prerequisites

Configure AWS credentials using the AWS CLI:

Create an S3 bucket (or use an existing one). Let’s use my-dvc-bucket
as an example.

11.3.3.2 Configuration Steps

To configure the remote storage, run:

This command:

Creates a new remote named myremote
Sets it as the default (-d flag) by default
Points to your S3 bucket path s3://my-dvc-bucket/path/to/data

The command creates/updates .dvc/config:

Example 11.3: .dvc/config

Commit the configuration to Git:

aws configure

dvc remote add -d myremote s3://my-dvc-bucket/path/to/data

[core]

 remote = myremote

['remote "myremote"']

 url = s3://my-dvc-bucket/path/to/data

git add .dvc/config

git commit -m "Configure S3 remote for DVC"

Upload your tracked data to S3:

11.3.4 Retrieve Data

Suppose you just joined a project that uses DVC to manage datasets
and model files. After cloning the Git repository, you might only see
.dvc files and pipeline definitions, but not the actual data content.

For example:

.

└── data/

 └── raw.dvc

The .dvc file contains metadata pointing to the data stored in a
remote location. To download and restore the full dataset locally,
simply run:

This command downloads the required files from the configured
remote storage and rebuilds the full directory structure:

.

└── data/

 ├── final/

 │ └── segmented.csv

 ├── intermediate/

 │ └── scale_features.csv

 ├── raw/

 │ └── marketing_campaign.csv

 └── raw.dvc

11.3.5 Switch Between Versions

dvc push

dvc pull

Without a reliable workflow, it’s easy to accidentally pair the wrong
version of code with the wrong version of data, leading to results you
can’t reproduce or trust.

The dvc checkout command makes it easy to switch between data and
model versions tied to specific Git commits or branches.

To demonstrate, let’s track and switch between two dataset versions.

Suppose you have a data.csv file with the following content:

feature target

1 0

2 1

3 0

From the terminal, track the dataset with DVC:

Next, make changes to the data.csv file:

feature target

10 1

20 0

30 1

Track the updated dataset:

dvc add data.csv

git add data.csv.dvc .gitignore

git commit -m "Version 1 of data"

dvc add data.csv

git add data.csv.dvc

git commit -m "Version 2 of data"

Now switch back to version 1:

This command restores data.csv to version 1, keeping data
synchronized with the corresponding code version.

Feature Target

1 0

2 1

3 0

11.3.6 Build a DVC Pipeline

Beyond tracking data, DVC allows you to create reproducible
machine learning pipelines that connect stages like preprocessing
and training.

The dvc.yaml file in Example 11.4 defines a two-stage pipeline
(process_data and train) that DVC executes and tracks. Each stage
contains:

stages: Top-level section containing all pipeline stages
process_data, train: Individual stage names mapping to pipeline
steps
cmd: Command DVC executes for each stage
deps: Stage dependencies including data files, Python scripts, or
configuration files
outs: Stage outputs that DVC versions and manages
automatically

Example 11.4: dvc.yaml

git checkout HEAD~1

dvc checkout

stages:

 process_data:

To execute the pipeline, use dvc repro. DVC runs only modified
stages. This approach eliminates unnecessary recomputation and
ensures reproducible results across pipeline runs.

For example, modifying src/segment.py executes only the affected
train stage.

Example 11.5: src/segment.py

'data/raw.dvc' didn't change, skipping

Stage 'process_data' didn't change, skipping

Running stage 'train':

> python src/segment.py

11.4 Key Takeaways

1. Benefits of Data Version Control

 cmd: python src/process_data.py

 deps:

 - data/raw

 - src/process_data.py

 - config

 outs:

 - data/intermediate

 train:

 cmd: python src/segment.py

 deps:

 - data/intermediate

 - src/segment.py

 - config

 outs:

 - data/final

 - model/cluster.pkl

def get_pca_model(data: pd.DataFrame) -> PCA:

 pca = PCA(n_components=4) # changed from 3 to 4

 pca.fit(data)

 return pca

dvc repro

Enables experiment replication by tracking exact data
versions and pipeline steps
Provides version control for large datasets without bloating
Git repositories
Facilitates team collaboration through shared data
versioning and synchronization

2. DVC core features
Tracks large datasets without bloating Git repositories
Supports multiple remote storage backends (S3, GCS,
Azure, etc.)
Creates reproducible machine learning pipelines
Integrates seamlessly with Git for version control

3. Best practices
Always initialize DVC in a Git repository
Use remote storage for large datasets
Commit .dvc files to Git, not the actual data

12 Continuous Integration

12.1 What Is Continuous Integration?

Continuous Integration (CI) is a software development practice
where team members frequently integrate their code changes into a
shared repository. Each integration is automatically verified by
running tests and other quality checks. By frequently integrating
code changes to a common repository, a team can ensure that new
changes don’t break existing functionality.

12.2 Why Is Continuous Integration
Important?

CI offers several key benefits for data science projects:

12.2.1 Early Bug Detection

CI automatically catches bugs and issues early in the development
process, preventing them from reaching production and saving
significant time and resources that would otherwise be spent
investigating and fixing problems later.

Consider this common scenario in machine learning development:

You modify the feature engineering function and push untested
changes to GitHub.
Later, you discover bugs, but your team members have already
pulled your changes.
The bugs affect the whole team’s work, degrading the quality of
the ML model.

This scenario is illustrated in Figure 12.1.

Figure 12.1: Consequences of Pushing Untested Code

By implementing CI, tests run automatically whenever code changes
are made, preventing these project setbacks that affect everyone.
Figure 12.2 illustrates how CI transforms this workflow.

Figure 12.2: CI Pipeline

12.2.2 Improved Code Quality

CI pipelines maintain high code quality by automatically checking
contributions against established standards.

For example, when a team member submits a PR with a machine
learning model, the CI system verifies that the code follows PEP 8
standards and includes proper docstrings for all functions.
Figure 12.3 illustrates this quality gate.

Figure 12.3: Code Quality Checks in CI

12.2.3 Documentation Maintenance

CI eliminates outdated documentation by automatically updating it
whenever code changes.

For example, when a data scientist updates a machine learning
model’s hyperparameters, CI automatically regenerates the model’s
documentation with the new parameter values, performance metrics,
and example usage. This ensures that team members always have
access to accurate, up-to-date information about the model.
Figure 12.4 illustrates this process.

Figure 12.4: Documentation Maintenance with CI

12.3 Use GitHub Actions for Continuous
Integration

12.3.1 What Is GitHub Actions?

GitHub Actions is a powerful tool that allows you to automate your
workflows and tasks. GitHub Actions is a continuous integration and
continuous delivery (CI/CD) platform that enables you to build, test,
and deploy your code with ease.

GitHub Actions is built on top of the GitHub platform, and is tightly
integrated with the GitHub repository. The tool allows you to create
workflows that are triggered by events in your repository, such as
when a pull request is created, a push is made to a branch, or a new
issue is opened.

There are four main components in GitHub Actions:

Workflows
Events
Jobs
Steps

The relationship between these components is illustrated in
Figure 12.5.

Figure 12.5: Components of GitHub Actions

Let’s go through each of these components in detail.

https://github.com/features/actions

12.3.2 Workflows

In GitHub Actions, workflows are sets of automated rules and
actions that are triggered by specific events in a GitHub repository.

Workflows are defined in the .github/workflows directory in a
repository, and a repository can have multiple workflows, each of
which can perform a different set of tasks. For example, you can have
one workflow to run tests and another workflow to create
documentation.

The workflow files are stored in a .github/workflows directory at the
root of your repository. The directory structure looks like this:

.

└──.github/

 └── workflows/

 ├── create_documentation.yaml

 └── run_tests.yaml

12.3.3 Event

Events in GitHub Actions are specific activities that occur in a
repository and can trigger the execution of a workflow.
The on keyword is used to define event triggers in a workflow file.

Here are some examples of events:

1. Triggering on any pull request activity:

2. Triggering when a pull request is opened or updated in
the main branch.

on:

 pull_request

on:

 pull_request:

3. Triggering on pull request with path filters:

By combining different event types and using filters
like branches and paths, you can precisely control when your
workflows should be triggered based on specific activities or changes
in your repository.

12.3.4 Jobs

Jobs are a set of tasks that are executed in response to an event
trigger in a GitHub Actions workflow. A job:

Contains a sequence of steps that are executed in order
Can run independently and in parallel with other jobs by default
Runs in its own virtual environment with specified
dependencies
Can depend on other jobs using the needs keyword

Let’s explore examples of jobs running in parallel and jobs with
dependencies.

12.3.4.1 Jobs running in parallel

Running jobs in parallel reduces overall workflow execution time by
allowing independent tasks to execute simultaneously.

 branches:

 - main

on:

 pull_request:

 branches:

 - main

 paths:

 - src/**

 - tests/**

 - config/**

The following example defines two jobs: evaluate_model and
get_predictions. Each job is configured to run on the latest Ubuntu
environment. Since these jobs have no dependencies specified
between them, they will execute in parallel.

12.3.4.2 Jobs with dependencies

Job dependencies ensure that tasks execute in the correct order,
preventing failures that occur when later steps run before their
required inputs are ready.

In the following example, we define four jobs that represent a typical
machine learning workflow:

data_preprocessing handles data cleaning and feature
engineering
model_training trains the machine learning model using the
preprocessed data
evaluate_model calculates model performance metrics
get_predictions generates predictions on new data

Each job has dependencies that enforce the correct execution order:

model_training requires data_preprocessing to complete first,
since it needs cleaned data.
Both evaluate_model and get_predictions wait for model_training
to finish, since they need the trained model.

jobs:

 evaluate_model:

 name: Evaluate model

 runs-on: ubuntu-latest

 get_predictions:

 name: Get predictions

 runs-on: ubuntu-latest

jobs:

 data_preprocessing:

 name: Process data

The dependencies are illustrated in Figure 12.6.

Figure 12.6: Job Dependencies in Machine Learning Workflow

12.3.5 Steps

Steps in a job are executed sequentially, and the output of each step
is used by the subsequent step.

Steps are defined under the steps key within each job in the workflow
file. Here is an example of a job called “Run unit tests” that contains
multiple steps:

 runs-on: ubuntu-latest

 model_training:

 name: Train model

 runs-on: ubuntu-latest

 needs: data_preprocessing

 evaluate_model:

 name: Evaluate model

 runs-on: ubuntu-latest

 needs: model_training

 get_predictions:

 name: Get predictions

 runs-on: ubuntu-latest

 needs: model_training

jobs:

 run_tests:

 name: Run unit tests

 runs-on: ubuntu-latest

Line 6
Checkout: Clones the Git repository
Line 9
Environment setup: Installs Python 3.8 on the runner
Line 14
Install dependencies: Installs project requirements and pytest
Line 19
Run tests: Executes tests with pytest

12.3.6 Actions

Many steps, like checkout and environment setup, are commonly
needed across different projects. Rather than rewriting these steps
for each project, GitHub Actions provides reusable components
called actions.

Actions are pre-packaged, reusable steps that can be shared across
workflows. Actions encapsulate common functionality into
standardized units that can be imported from GitHub’s Marketplace,
making workflows simpler and more maintainable.

 steps:

 - name: Checkout

 run: git clone https://github.com/example/my-project

 - name: Environment setup

 run: |

 sudo apt-get update

 sudo apt-get install python3.8 -y

 - name: Install dependencies

 run: |

 pip install -r requirements.txt

 pip install pytest

 - name: Run tests

 run: pytest tests

https://github.com/marketplace?type=actions

Here is the rewritten YAML file of the run_tests job that uses pre-
defined actions (actions/checkout@v2 and actions/setup-python@v2).

Line 7
actions/checkout@v2: Clones the Git repository
Line 10
actions/setup-python@v2: Sets up the Python environment

12.4 Common Data Science Workflows

Now that we’ve learned the basics of GitHub Actions, let’s explore
some common data science workflows that can be automated with
GitHub Actions.

12.4.1 Create Documentation

jobs:

 run_tests:

 name: Run unit tests

 runs-on: ubuntu-latest

 steps:

 - name: Checkout

 uses: actions/checkout@v2

 - name: Environment setup

 uses: actions/setup-python@v2

 with:

 python-version: 3.8

 - name: Install dependencies

 run: |

 pip install -r requirements.txt

 pip install pytest

 - name: Run tests

 run: pytest tests

Automated documentation generation keeps your project
documentation synchronized with code changes, eliminating the
manual effort of updating docs.

Here’s how to set up GitHub Actions to create documentation when a
pull request modifies files in the src directory:

Line 21

name: Create documentation

on:

 pull_request:

 paths:

 - src/**

jobs:

 create_documentation:

 name: Create documentation

 runs-on: ubuntu-latest

 steps:

 - name: Checkout

 id: checkout

 uses: actions/checkout@v2

 - name: Environment setup

 uses: actions/setup-python@v2

 with:

 python-version: 3.8

 - name: Install dependencies

 run: |

 pip install -r requirements.txt

 pip install pdoc3

 - name: Create documentation

 run: pdoc --html src -o docs --force

 - name: Create artifact

 uses: actions/upload-artifact@v2

 with:

 name: documentation

 path: docs

Installs the pdoc3 package, an API documentation generator for
Python.
Line 26
Executes the pdoc command to generate HTML documentation for
the src directory. The documentation is outputted to the docs
directory.
Line 29
Uploads the docs directory as an artifact named “documentation”,
making it available for further use or distribution.

Whenever changes are made to files within the src directory in a pull
request, this workflow will be triggered. The workflow generates
HTML documentation for the code in src and creates an artifact
containing the documentation.

Figure 12.7 illustrates the workflow.

Figure 12.7: Create Documentation Workflow

12.4.2 Run Data Pipeline on Data Changes

GitHub Actions can automatically trigger your data pipeline
whenever data changes, keeping your processed outputs
synchronized with source data.

Here’s how to set up GitHub Actions to execute the data pipeline
when changes are made to files in the data directory:

name: Data Pipeline Workflow

on:

 push:

https://pdoc3.github.io/pdoc/

Line 4
Triggers the workflow when changes are made to files within the data
directory.
Line 25

 paths:

 - data/**

jobs:

 run_pipeline:

 runs-on: ubuntu-latest

 steps:

 - name: Checkout

 id: checkout

 uses: actions/checkout@v2

 - name: Environment setup

 uses: actions/setup-python@v2

 with:

 python-version: 3.8

 - name: Install DVC

 run: pip install dvc

 - name: Configure AWS Credentials

 uses: aws-actions/configure-aws-credentials@v1

 with:

 aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}

 aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY
}}

 aws-region: us-east-1

 - name: Configure DVC Remote

 run: dvc remote modify my_remote s3://my-bucket/data

 - name: Pull Latest Data

 run: dvc pull

 - name: Execute Data Pipeline

 run: dvc repro

Configures AWS credentials. The credentials are retrieved from the
repository’s secrets.
Line 32
Configures the DVC remote storage to use an S3 bucket named “my-
bucket” and a directory named “data”.
Line 35
Pulls the latest data from the configured DVC remote storage using
the dvc pull command.

With this workflow, your data pipeline will be automatically executed
whenever changes are made to files in the data directory, as
illustrated in Figure 12.8.

Figure 12.8: Data Change Workflow

12.4.3 Generate Report

Automated report generation ensures stakeholders always receive
the latest analysis results without manual intervention.

Use the following YAML file to set up this workflow:

name: Report Generation Workflow

on:

 push:

 paths:

 - analysis/*.py

jobs:

 generate_report:

 runs-on: ubuntu-latest

https://docs.github.com/en/actions/security-guides/encrypted-secrets#creating-encrypted-secrets-for-a-repository

Line 6
Triggers the workflow when changes are made to Python analysis
scripts within the analysis directory.
Line 25
Executes the generate_report.py script, generating the desired report
or visualization.
Line 28
Uploads the generated report as an artifact named “generated-
report”.

The generated report can then be accessed as an artifact, ready to be
shared with others, as illustrated in Figure 12.9.

 steps:

 - name: Checkout

 id: checkout

 uses: actions/checkout@v2

 - name: Environment setup

 uses: actions/setup-python@v2

 with:

 python-version: 3.8

 - name: Install Dependencies

 run: pip install -r requirements.txt

 - name: Generate Report

 run: python analysis/generate_report.py

 - name: Upload Report

 uses: actions/upload-artifact@v2

 with:

 name: generated-report

 path: analysis/report.pdf

Figure 12.9: Generate Report Workflow

12.5 Key Takeaways

1. Benefits of Continuous Integration:

CI automates testing and documentation tasks triggered by PR
submissions
Helps catch bugs early before they affect the entire team
Enables faster development cycles and better collaboration
Increases confidence in code quality through automated
validation

2. GitHub Actions components:

Workflows: Automated rules triggered by repository events
Events: Activities that trigger workflows (e.g., PR creation,
push)
Jobs: Sets of tasks that execute in response to events
Steps: Sequential tasks within a job
Actions: Reusable components for common tasks

13 Package Your Project

13.1 What Is Packaging?

Packaging is the process of organizing your code into a structured
format that makes your project easy to distribute and install.

13.2 Why Is Packaging Essential?

13.2.1 Easy Distribution and Sharing

Packaging your project enables easy distribution and sharing,
allowing others to install your utilities with a single command while
automatically handling dependencies and version management.

Consider this scenario: You’ve developed useful data processing
utilities that your colleagues want to use as part of a different project.
While they could get the code directly from your repository, this
approach has several drawbacks:

They would need to manually integrate your code into their
projects, which can be labor-intensive and error-prone.
They would need to identify and install all the required
dependencies themselves.
When you update your utilities with bug fixes or improvements,
they would need to manually sync their copy.

Different colleagues might end up with different versions of your
code, leading to inconsistencies.

Packaging solves these issues by enabling upload to PyPI, where
others can install with pip install your-package and automatically
receive dependencies and the correct version, as shown in
Figure 13.1.

Figure 13.1: Packaging Your Project

13.2.2 Version Control and Dependency
Management

Packaging provides version control capabilities that solve
compatibility conflicts by allowing multiple versions to coexist across
different projects.

Different colleagues may have varying requirements or constraints
that make certain versions of your library more suitable for their
specific needs. For example:

One colleague might need an older version that maintains
compatibility with their legacy systems
Another might want the latest version with new features

By packaging your library, you can define version numbers, specify
dependencies, and include other crucial metadata. This enables

https://pypi.org/

different users to simultaneously use different versions of your
package without conflicts, as shown in Figure 13.2.

Figure 13.2: Packaging Your Project Version Control

13.3 Use uv for Packaging

Several tools are available for packaging Python projects, including
setuptools, Poetry, and uv. In this chapter, we’ll focus on using uv
since it provides a modern, streamlined approach to both
dependency management and packaging.

As discussed in Dependency Management, uv is a fast and reliable
tool that handles dependency management. Beyond managing
dependencies, uv also includes robust packaging capabilities, making
it an excellent all-in-one solution. For projects already using uv for
dependency management, the packaging process integrates
seamlessly with your existing workflow.

13.3.1 Prepare the Project Structure

To prepare your project for packaging, organize your code so the
source directory matches your package name, enabling direct
imports and clear module access. For a project called
pandas_processors, the source directory must also be named
pandas_processors:

pandas_processors

├── pandas_processors/

│ ├── __init__.py

│ ├── create.py

│ ├── impute.py

│ └── normalize.py

├── tests/

├── pyproject.toml

├── README.md

└── ...

This directory structure allows users to import your package directly
using:

If the impute module includes a class named MeanMedianImputer, users
can access it with:

13.3.2 Add Metadata

Configure your project’s packaging metadata and build system in
pyproject.toml to define how your package will be built and
distributed.

Start by adding metadata such as the package name, version, author,
description, and README file.

Example 13.1: pyproject.toml

import pandas_processors

from pandas_processors.create import MeanMedianImputer

[tool.uv]

name = "pandas-processors"

version = "0.1.0"

description = "Utilities for pandas DataFrame processing."

authors = ["khuyentran1401 <khuyentran1476@gmail.com>"]

readme = "README.md"

Next, add the [build-system] section to the pyproject.toml file, which
specifies the build backend to use. We will use hatchling, a modern,
fast alternative to setuptools, as our build backend.

Example 13.2: pyproject.toml

13.3.3 Build the Package

Building your package creates distribution files that can be uploaded
to PyPI and installed by users on different systems and platforms.

Execute the following command to start the build process:

Building source distribution...

Building wheel from source distribution...

Successfully built dist/pandas_processors-0.1.0.tar.gz

Successfully built dist/pandas_processors-0.1.0-py3-none-any.whl

Running this command will generate the dist/ directory with the
following files:

dist/

├──.gitignore

├── pandas_processors-0.1.0.tar.gz

└── pandas_processors-0.1.0-py3-none-any.whl

These files represent two different ways to distribute your Python
package:

1. Source Distribution (.tar.gz):
A compressed archive containing your package’s source
code.
Platform-independent and can be installed on any system.

[build-system]

requires = ["hatchling"]

build-backend = "hatchling.build"

uv build

https://hatch.pypa.io/latest/build/

Requires the user to have a Python environment with build
tools.

2. Wheel Distribution (.whl):
A pre-built, binary package format that installs faster than
source distributions
Cross-platform compatible with Python 3 (filename shows
py3-none-any)
The preferred format for most installations

When users install your package using pip install pandas-processors,
pip will automatically choose the appropriate distribution format
based on their system. On most systems, pip will prefer the wheel file
for faster installation.

13.3.4 Publish the Package

The final step in packaging is uploading your built distribution files
to PyPI, where they become available for installation worldwide.

PyPI (Python Package Index) is the official repository for Python
packages. Publishing to PyPI makes your package:

1. Publicly Available: Anyone can install it using pip/uv
2. Discoverable: Listed in PyPI’s searchable index
3. Version Controlled: Supports multiple versions
4. Dependency Managed: PyPI handles dependencies

automatically

To publish the package to PyPI, run the following command:

Publishing pandas-processors (0.1.0) to PyPI

 - Uploading pandas_processors-0.1.0-py3-none-any.whl 100%

 - Uploading pandas_processors-0.1.0.tar.gz 100%

uv publish

https://pypi.org/

After publishing, your package will be accessible on PyPI. You can
install the package using:

13.4 Manage Package Versions

When maintaining a Python package, proper version management is
crucial for both users and developers. Here’s how to effectively
manage your package versions:

13.4.1 Semantic Versioning

Follow the Semantic Versioning (SemVer) specification, which uses a
three-part version number: MAJOR.MINOR.PATCH:

MAJOR version: Increment when making incompatible API
changes
MINOR version: Increment when adding functionality in a
backward-compatible manner
PATCH version: Increment when making backward-compatible
bug fixes

For example:

1.0.0: Initial release
1.0.1: Bug fix
1.1.0: New feature
2.0.0: Breaking changes

13.4.2 Updating Package Version

To update the package version, follow the following steps:

pip install pandas-processors

https://semver.org/

1. Update the version in the pyproject.toml file:

2. Create a Git tag to mark the release version:

3. Build and publish the package:

13.4.3 Version Constraints

Users can install specific versions using:

13.5 Add a Documentation Page

To enhance developer adoption of your package, create API
documentation and host it for easy access. This process involves two
main steps:

1. Create an API documentation page
2. Enable GitHub Pages to host the documentation

pyproject.toml

[tool.uv]

name = "pandas-processors"

version = "1.0.1" # Increment as needed

git tag -a v1.0.1 -m "Version 1.0.1"

git push origin v1.0.1

uv build

uv publish

Install exact version

pip install pandas-processors==1.0.1

Install latest minor version

pip install pandas-processors~=1.0.0

Install latest major version

pip install pandas-processors>=1.0.0

13.5.1 Create an API Documentation Page

API documentation generation transforms your code comments and
docstrings into professional, browsable documentation that helps
developers understand your package’s functionality.

We will use pdoc3 for this purpose, a Python tool that automatically
extracts and formats documentation from your code.

Start with installing pdoc3 as a development dependency using uv,
since it’s not needed for end users.

From your project’s root directory, run the following command to
generate the HTML documentation:

This command creates a docs directory with the following structure:

pandas_processors/

└── docs/

 └── pandas_processors/

 ├── create.html

 ├── impute.html

 ├── index.html

 └── normalize.html

Add and commit the docs directory to your GitHub repository:

13.5.2 Enable GitHub Pages

To make your API documentation accessible to developers
worldwide, you have several hosting options. GitHub Pages is one

uv add pdoc3 --dev

pdoc --html pandas_processors -o docs

git add docs

git commit -m "Add API documentation generated by pdoc3"

git push origin main

https://pdoc3.github.io/pdoc3/
https://pages.github.com/

popular choice that provides free web hosting and integrates
seamlessly with your repository.

GitHub Pages can be configured in two ways:

Branch deployment: Publish directly from a repository
branch and folder
GitHub Actions workflow: Use automated deployment for
more control

Both approaches make your documentation accessible via a public
URL that you can link from your PyPI package page.

For detailed setup instructions, refer to GitHub’s documentation on
setting up GitHub Pages.

13.5.3 Build and Publish the Updated
Package

Complete the documentation setup by updating your package
configuration with the documentation link and publishing a new
version.

Example 13.3: pyproject.toml

Build the updated package:

[tool.uv]

name = "pandas-processors"

version = "0.1.2"

description = "Utilities for pandas DataFrame processing."

authors = ["khuyentran1401 <khuyentran1476@gmail.com>"]

repository = "https://github.com/khuyentran1401/pandas-
processors.git"

readme = "README.md"

documentation = "https://khuyentran1401.github.io/pandas-
processors/"

https://docs.github.com/en/pages/getting-started-with-github-pages/configuring-a-publishing-source-for-your-github-pages-site

Publish the updated package:

After publishing, the documentation will appear under the “Project
links” section of your PyPI repository.

13.6 Key Takeaways

1. Project organization and structure:
Use a nested directory structure
(package_name/package_name/) for clean imports
Include essential files like pyproject.toml, README.md, and
.gitignore

2. Build system and distribution:
Use modern tools like uv and hatchling for building
packages
Configure build settings in pyproject.toml
Publish to PyPI for public distribution

3. Version management:
Follow semantic versioning (MAJOR.MINOR.PATCH)
Use Git tags to mark releases

4. Documentation and visibility:
Generate API documentation using pdoc3
Host documentation on GitHub Pages

uv build

uv publish

14 Notebooks in Production

14.1 Notebook Production Challenges

While Jupyter Notebooks excel at exploratory data analysis and
prototyping with their interactive code execution and visualization
capabilities, they face significant challenges when used in production
environments.

Production workflows, like data pipelines, model training, and
deployment, require robust, maintainable, and reproducible code.
Let’s explore why Jupyter Notebooks can be problematic in
production and see what alternatives exist.

14.1.1 Hidden State Issues

Jupyter notebooks maintain a hidden execution state that can
diverge from what’s visible in the code cells, creating unpredictable
behavior and making code difficult to reproduce reliably.

Consider this scenario: you assign x = 5 in a cell, then later delete
that cell. The variable x disappears from your visible code but
remains in memory, creating invisible dependencies that can break
your notebook’s reproducibility.

Example 14.1: notebook.ipynb

This mismatch between visible code and execution state, illustrated
in Figure 14.1 and Figure 14.2, makes it impossible to reliably
reproduce results by running cells from top to bottom.

x = 5

Figure 14.1: Matching Hidden State

Figure 14.2: Mismatching Hidden State

14.1.2 Variable Redefinition Issues

Variable redefinition occurs when a variable is assigned a new value,
overwriting its previous value. While redefinition is possible in any
Python script, it’s particularly common in Jupyter notebooks because
cells can be executed in any order and multiple times.

Consider this data analysis notebook where the date column
undergoes three transformations:

Example 14.2: Cell 1

Example 14.3: Cell 2

Example 14.4: Cell 3

This pattern creates three critical problems:

Initial data loading

df = pd.read_csv('data.csv')

df['date'] = pd.to_datetime(df['date']) # datetime object

Convert to date only

df['date'] = df['date'].dt.date # date object

Convert to string for categorical encoding

df['date'] = df['date'].astype(str) # string

State tracking confusion: You can’t easily tell what format
date is in
Debugging complexity: Tracking down errors becomes
difficult because you need to determine which transformation
step broke your code
Broken dependencies: Other cells will fail unexpectedly if
they assume the wrong date format based on execution order

14.1.3 Cell Execution Dependency Issues

Jupyter notebooks allow arbitrary cell execution order, but when
cells depend on previous steps, this flexibility becomes a liability.
Running cells out of order can produce incorrect results or errors,
making notebooks difficult to maintain and unreliable when revisited
later.

Consider this example of a data preprocessing pipeline where each
cell depends on the previous one completing successfully:

Example 14.5: Cell 1

Example 14.6: Cell 2

Example 14.7: Cell 3

Example 14.8: Cell 4

Load and clean data

df = pd.read_csv('data/sales_data.csv')

Feature engineering

df['profit_margin'] = df['revenue'] / df['cost']

df['profit_margin'] = df['profit_margin'].round(2)

Remove outliers

df = df[df['profit_margin'] < 10]

Calculate statistics

mean_profit = df['profit_margin'].mean()

When executed in the correct sequence, this code produces the
expected results. However, executing cells in a different order can
lead to incorrect calculations or errors.

For example, if you run Cell 4 before Cell 3, you’ll get statistics that
include outliers.

Example 14.9: Cell 4

Example 14.10: Cell 3

If you run Cell 3 before Cell 2, you’ll get a KeyError because
profit_margin hasn’t been created yet.

Example 14.11: Cell 3

KeyError: 'profit_margin'

Example 14.12: Cell 2

14.1.4 Version Control Issues

Jupyter notebooks use a JSON file format to store code and output
together. This single-file approach makes version control challenging

print(f"Average profit margin: {mean_profit:.2f}%")

Calculate statistics

mean_profit = df['profit_margin'].mean()

print(f"Average profit margin: {mean_profit:.2f}%")

Remove outliers

df = df[df['profit_margin'] < 10]

Remove outliers

df = df[df['profit_margin'] < 10]

Feature engineering

df['profit_margin'] = df['revenue'] / df['cost']

df['profit_margin'] = df['profit_margin'].round(2)

and creates several problems:

Unreadable diffs: When you make changes to your notebook,
Git shows the raw JSON, making it hard to understand what
actually changed in your code.

Large file sizes: Notebooks can grow very large when they
contain plot outputs, large data frames, and model training
results.

Merge conflicts: When multiple people edit the same
notebook, the JSON format makes it difficult to resolve conflicts.

GitHub rendering: Large output files can cause GitHub to fail
to render notebook diffs properly, making code reviews
impossible.

Let’s say we have the following notebook cells and their outputs:

Example 14.13: Cell 1

Example 14.14: Cell 2

The underlying JSON structure contains metadata, execution counts,
and outputs that make tracking actual code changes difficult:

data = [1, 2, 3]

print(f'Sum: {sum(data)}')

{

 "cells": [

 {

 "cell_type": "code",

 "execution_count": 1,

 "outputs": [],

 "source": ["data = [1, 2, 3]"]

 },

 {

 "cell_type": "code",

 "execution_count": 2,

14.1.5 Testing Issues

Testing code in Jupyter notebooks is challenging because notebooks
lack built-in testing capabilities. You need external tools like ipytest.

This example shows the extra setup required, with Cell 2 using
%%ipytest -qq to test the function defined in Cell 1:

Example 14.15: Cell 1

Example 14.16: Cell 2

 "outputs": [

 {

 "name": "stdout",

 "output_type": "stream",

 "text": ["Sum: 6\n"]

 }

],

 "source": ["print(f'Sum: {sum(data)}')"]

 }

]

}

Define function that uses global state

def calculate_profit_margin(df):

 return (df['profit'].sum() / df['sales'].sum()) * 100

Test the function

%%ipytest -qq

def test_profit_margin():

 df = pd.DataFrame({

 'sales': [100, 200, 300, 400, 500],

 'cost': [50, 100, 150, 200, 250]

 })

 df['profit'] = df['sales'] - df['cost']

 margin = calculate_profit_margin(df)

 assert margin == 50.0 # Expected margin

https://github.com/chmp/ipytest

14.2 Best Practices for Jupyter Notebooks

Here are some best practices for using Jupyter notebooks to avoid
the issues we’ve discussed:

1. Use Functions or Classes: Encapsulate code in functions or
classes with clear inputs and outputs. This reduces hidden state
dependencies and makes code easier to understand and
maintain.

2. Avoid Variable Redefinition: Use new variable names when
modifying data instead of redefining variables across cells. For
example, use filtered_df rather than reassigning to df.

3. Clean Environment and Outputs: Clear outputs and restart
the kernel regularly, especially before sharing notebooks. Use
“Cell” > “All Output” > “Clear” and “Cell” > “Run All” to ensure
clean execution.

While these best practices can help, they’re difficult to maintain
consistently in an environment designed for flexible execution.
Manually tracking clean environments, cleared outputs, and variable
names creates extra work during development.

What if there was a modern notebook that could enforce these best
practices automatically instead of relying on your memory?

marimo provides this solution by enforcing reproducibility through
its design.

14.3 Use marimo for Reproducible Data
Science

marimo is a next-generation Python notebook that revolutionizes the
data science workflow by combining interactivity with
reproducibility. Its modern design and seamless integration make it

https://github.com/marimo-team/marimo

an ideal choice for data scientists who want to create both
exploratory analyses and production-ready applications.

14.3.1 Why marimo?

marimo solves three major issues common in traditional notebooks:

Hidden state and out-of-order execution: marimo
enforces top-to-bottom execution with clear cell dependencies.
Version control and diffing: marimo notebooks are stored
as plain Python scripts, making them easy to version control
with Git, review changes through diffs, and collaborate with
teammates through pull requests.
Reusability and sharing: You can export a marimo notebook
as a web app or module, making your analysis immediately
interactive and reusable.

14.3.2 Getting Started

To install marimo, run:

To start a new notebook, run:

Your notebook opens in a browser, but stays a clean .py file under
the hood.

14.3.3 Auto-Update Dependent Cells

A major strength of marimo is automatic dependency tracking.
When you modify a cell, marimo automatically detects which other
cells depend on its outputs and re-executes them in the correct order.

pip install marimo

marimo edit my_notebook.py

For example, when you create a data filtering workflow with two
cells:

Example 14.17: Cell 1

Example 14.18: Cell 2

[40, 60, 80]

If you change threshold to 50 in Cell 1, marimo automatically
detects the dependency and reruns Cell 2 with the new value:

Example 14.19: Cell 1

Example 14.20: Cell 2

[60, 80]

14.3.4 Prevent Variable Redefinition

marimo prevents you from redefining variables across different cells.
This eliminates bugs caused by naming collisions and makes
notebook logic more predictable.

Define threshold

threshold = 30

Filter data using threshold

data = [20, 40, 60, 80]

filtered = [x for x in data if x > threshold]

print(filtered)

Updated threshold

threshold = 50

Automatically rerun with new threshold

data = [20, 40, 60, 80]

filtered = [x for x in data if x > threshold]

print(filtered)

For example, when you accidentally reuse a variable name across
cells, marimo immediately catches the error:

Example 14.21: Cell 1

Example 14.22: Cell 2

This cell wasn't run because it has errors

This cell redefines variables from other cells.

'data' was also defined by:

• cell-1

To fix this error, use a unique variable name in Cell 2:

Example 14.23: Cell 1

Example 14.24: Cell 2

Alternatively, use a private variable with an underscore prefix that
stays local to the cell:

Example 14.25: Cell 2

14.3.5 Enable Clean Version Control

Initial data

data = [1, 2, 3]

Attempt to redefine data

data = [4, 5, 6]

Initial data

data = [1, 2, 3]

New variable with different name

new_data = [4, 5, 6]

Private variable (not shared between cells)

_data = [4, 5, 6]

Since marimo notebooks are plain Python files, they can be
versioned just like any other source code.

Consider this interactive notebook workflow:

Example 14.26: Cell 1

Example 14.27: Cell 2

Example 14.28: Cell 3

Behind the scenes, marimo saves this as a clean Python script that
works seamlessly with Git and code review tools:

Example 14.29: my_notebook.py

Define data

data = [1, 2, 3]

Process data

summary = sum(data)

print("Sum:", summary)

Create new dataset

data_1 = [10, 20, 30]

import marimo

__generated_with = "0.13.0"

app = marimo.App()

@app.cell

def _():

 data = [1, 2, 3]

 return (data,)

@app.cell

def _(data):

 summary = sum(data)

 print("Sum:", summary)

 return

14.3.6 Add Lightweight Unit Testing

Because marimo notebooks are Python scripts, you can run pytest
directly on the notebook file from the terminal. This enables
seamless CI pipeline testing using standard pytest commands.

test_example.py [100%]

=================== 4 passed in 0.22s ===================

14.3.7 Export in Multiple Reusable
Formats

marimo notebooks offer flexible export capabilities for various
deployment scenarios. These formats support the complete data
science lifecycle from exploration to production.

Each export mode serves a specific purpose:

HTML: Great for sharing static visualizations and reports with
stakeholders.
HTML-WASM: Perfect for publishing interactive dashboards
online without needing a backend server.
IPYNB: Enables compatibility with traditional Jupyter
workflows.

@app.cell

def _():

 data_1 = [10, 20, 30]

 return

if __name__ == "__main__":

 app.run()

pytest test_example.py

Markdown: Ideal for documentation, blogs, or version-
controlled notebooks in prose form.
Script: Useful for integrating analytical logic into larger Python
projects or production pipelines.

14.4 Key Takeaways

1. Traditional Jupyter Notebooks are not ideal for production
because:

Hidden state and out-of-order execution can lead to
unpredictable results
Variable redefinition creates confusion and makes code
harder to maintain
Version control is challenging due to JSON format
Testing requires external tools and additional setup

2. Best practices for using Jupyter Notebooks:
Encapsulate code in functions or classes with explicit
inputs/outputs
Avoid variable redefinition across cells
Regularly clear outputs and restart the kernel
Use descriptive variable names to track data
transformations

3. marimo offers a modern alternative by:
Storing notebooks as plain Python scripts for better version
control
Automatically tracking and updating cell dependencies
Preventing variable redefinition across cells
Supporting multiple export formats for different use cases
Enabling easy testing through standard Python testing tools

marimo export html my_notebook.py

marimo export html-wasm my_notebook.py

marimo export ipynb my_notebook.py

marimo export md my_notebook.py

marimo export script my_notebook.py

	Preface
	Motivation
	Audience
	Prerequisites
	What Makes This Book Different
	Hands-On Examples
	About the Author

	Copyright
	1 Version Control
	1.1 What Is Version Control?
	1.2 Why Is Version Control Essential?
	1.3 Use Git for Version Control
	1.4 Best Practices in Version Control
	1.5 Key Takeaways

	2 Dependency Management
	2.1 What Is Dependency Management?
	2.2 Best Practices for Dependency Management
	2.3 Use uv to Manage Dependencies
	2.4 Key Takeaways

	3 Python Modules and Packages
	3.1 What Are Python Modules and Packages?
	3.2 Project Organization Best Practices
	3.3 Import Best Practices
	3.4 Key Takeaways

	4 Python Variables
	4.1 What Are Variables?
	4.2 Choose the Right Python Collection
	4.3 Best Practices for Python Variables
	4.4 Key Takeaways

	5 Python Functions
	5.1 What Are Python Functions?
	5.2 Why Are Python Functions Essential?
	5.3 Best Practices for Python Functions
	5.4 Advanced Function Toolkit
	5.5 Key Takeaways

	6 Python Classes
	6.1 What Are Python Classes?
	6.2 Best Practices for Python Classes
	6.3 Advanced Class Toolkit
	6.4 Key Takeaways

	7 Unit Testing
	7.1 What Is Unit Testing?
	7.2 Why Is Unit Testing Essential?
	7.3 Use Pytest for Unit Testing
	7.4 Best Practices for Unit Testing
	7.5 Key Takeaways

	8 Configuration Management
	8.1 What Is Configuration Management?
	8.2 Why Is Configuration Management Essential?
	8.3 Use Hydra to Manage Configurations
	8.4 Best Practices for Configuration Management
	8.5 Key Takeaways

	9 Logging and Exception Handling
	9.1 What Is Logging?
	9.2 Why Should You Use Logging Instead of Print?
	9.3 Use Loguru for Python Logging
	9.4 Best Practices For Exception Handling
	9.5 Key Takeaways

	10 Data Validation
	10.1 What Is Data Validation?
	10.2 Why Is Data Validation Essential?
	10.3 Data Validation Made Easy with Pandera
	10.4 Best Practices for Data Validation
	10.5 Key Takeaways

	11 Data Version Control
	11.1 What Is Data Version Control?
	11.2 Why Is Data Version Control Essential?
	11.3 Use DVC for Data Version Control
	11.4 Key Takeaways

	12 Continuous Integration
	12.1 What Is Continuous Integration?
	12.2 Why Is Continuous Integration Important?
	12.3 Use GitHub Actions for Continuous Integration
	12.4 Common Data Science Workflows
	12.5 Key Takeaways

	13 Package Your Project
	13.1 What Is Packaging?
	13.2 Why Is Packaging Essential?
	13.3 Use uv for Packaging
	13.4 Manage Package Versions
	13.5 Add a Documentation Page
	13.6 Key Takeaways

	14 Notebooks in Production
	14.1 Notebook Production Challenges
	14.2 Best Practices for Jupyter Notebooks
	14.3 Use marimo for Reproducible Data Science
	14.4 Key Takeaways

